DOI QR코드

DOI QR Code

Unusual Non-magnetic Metallic State in Narrow Silicon Carbon Nanoribbons by Electron or Hole Doping

  • Lou, Ping (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Jin-Yong (Department of Physics, Anhui University)
  • Received : 2011.05.18
  • Accepted : 2011.08.31
  • Published : 2012.03.20

Abstract

We investigated the width (N) dependence on the magnetization of N-ZSiC NR with electron and hole doping on the basis of systematic DFT calculations. The critical values of the upper and down critical concentration to give the maximum and zero magnetic moment at edge Si/C atoms by electron/hole doping ($x_{up,e}$, $x_{down,e}$, $x_{up,h}$, and $x_{down,h}$) depend on the width of N-ZSiC NR. Moreover, due to $x_{up,e}\;{\neq}\;x_{up,h}$ and $x_{down,e}\;{\neq}\;x_{down,h}$, the electron and hole doping effect are asymmetry, i.e, the critical electron doping value ($x_{down,e}$) is smaller than the critical hole doping value ($x_{down,h}$) and is almost independent of the width of NZSiC NR though the other critical values of the electron and hole doping that influence the magnetization of N-ZSiC NR depend on the width. It was also found that at $x_{down,e}$ or $x_{down,h}$ doping, the N-ZSiC NR turns into unusual non-magnetic metallic state. The magnetic behavior was discussed based on the band structures and projected density of states (PDOS) under the effect of electron/hole doping.

Keywords

References

  1. Zuti , I., Fabian, J.; Das Sarma, S. Rev. Mod. Phys. 2004, 76, 323. https://doi.org/10.1103/RevModPhys.76.323
  2. Kim, W. Y.; Kim, K. S. Nature Nanotechnology 2008, 3, 408. https://doi.org/10.1038/nnano.2008.163
  3. Guo, J.; Gunlycke, D.; White, C. T. Appl. Phys. Lett. 2008, 92, 163109. https://doi.org/10.1063/1.2908207
  4. Munoz-Rojas, F.; Fernandez-Rossier, J.; Palacios, J. J. Phys. Rev. Lett. 2009, 102, 136810. https://doi.org/10.1103/PhysRevLett.102.136810
  5. Leon, A.; Barticevic, Z.; Pacheco, M. Appl. Phys. Lett. 2009, 94, 173111. https://doi.org/10.1063/1.3127231
  6. Zheng, X. H.; Wang, R. N.; Song, L. L.; Dai, Z. X.; Wang, X. L.; Zeng, Z. Appl. Phys. Lett. 2009, 95, 123109. https://doi.org/10.1063/1.3237165
  7. Nguyen, V. H.; Do, V. N.; Bournel, A.; Nguyen, V. L.; Dollfus, P. J. Appl. Phys. 2009, 106, 053710. https://doi.org/10.1063/1.3212984
  8. Castro Neto, A.; Guinea, F.; Peres, N.; Novoselov, K.; Geim, A. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/RevModPhys.81.109
  9. Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206805 https://doi.org/10.1103/PhysRevLett.98.206805
  10. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Heer, W. A. D. Science 2006, 312, 1191. https://doi.org/10.1126/science.1125925
  11. Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K.; Yakobson, B. I.; Ajayan, P. Nano Res. 2008, 1, 116. https://doi.org/10.1007/s12274-008-8020-9
  12. Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Medeiros- Ribeiro, G.; Enoki, T.; Kobayashi, Y.; Takai, K.; Fukui, K.; Dresselhaus, M. S.; Saito, R.; Jorio, A. Phys. Rev. Lett. 2004, 93, 047403. https://doi.org/10.1103/PhysRevLett.93.047403
  13. Lee, H.; Son, Y. W.; Park, N.; Han, S.; Yu, J. Phys. Rev. B 2005, 72, 174431. https://doi.org/10.1103/PhysRevB.72.174431
  14. Ezawa, M. Phys. Rev. B 2006, 73, 045432 https://doi.org/10.1103/PhysRevB.73.045432
  15. Son, Y. W.; Cohen, M. L; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803. https://doi.org/10.1103/PhysRevLett.97.216803
  16. Ezawa, M. Phys. Rev. B 2007, 76, 245415. https://doi.org/10.1103/PhysRevB.76.245415
  17. Ezawa, M. Physica E 2008, 40, 1421 https://doi.org/10.1016/j.physe.2007.09.031
  18. Son, Y. W.; Cohen, M. L.; Louie, S. G. Nature (London) 2006, 444, 347. https://doi.org/10.1038/nature05180
  19. Hod, O.; Barone, V.; Peralta, J. E.; Scueria, G. E. Nano Lett. 2007, 7, 2295. https://doi.org/10.1021/nl0708922
  20. Kan, E. J.; Li, Z.; Yang, J.; Hou, J. G. Appl. Phys. Lett. 2007, 91, 243116. https://doi.org/10.1063/1.2821112
  21. Hod, O.; Barone, V.; Scuseria, G. E. Phys. Rev. B 2008, 77, 035411. https://doi.org/10.1103/PhysRevB.77.035411
  22. Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. J. Phys. Soc. Jpn. 1996, 65, 1920 https://doi.org/10.1143/JPSJ.65.1920
  23. Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Phys. Rev. B 1999, 59, 8271. https://doi.org/10.1103/PhysRevB.59.8271
  24. Barone, V.; Hod, O.; Scuseria, G. E. Nano Lett. 2006, 6, 2748. https://doi.org/10.1021/nl0617033
  25. Kudin, K. N. ACS Nano 2008, 2, 516. https://doi.org/10.1021/nn700229v
  26. Sawada, K.; Ishii, F.; Saito, M. Appl. Phys. Express 2008, 1, 064004. https://doi.org/10.1143/APEX.1.064004
  27. Sawada, K.; Ishii, F.; Saito, M.; Kawai, T. Nano Lett. 2009, 9, 269. https://doi.org/10.1021/nl8028569
  28. Sergio, D. D.; Zachary, H. L. J. Phys. Chem. C 2008, 112, 8196. https://doi.org/10.1021/jp711524y
  29. Zhang, X. W.; Yang, G. W. J. Phys. Chem. C 2009, 113, 4662. https://doi.org/10.1021/jp810483r
  30. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. J. Phys. Chem. C 2009, 113, 15043. https://doi.org/10.1021/jp9053499
  31. Sharma, R.; Nair, N.; Strano, M. S. J. Phys. Chem. C 2009, 113, 14771. https://doi.org/10.1021/jp904814h
  32. Lu, Y. H.; Feng, Y. P. J. Phys. Chem. C 2009, 113, 20841. https://doi.org/10.1021/jp9067284
  33. Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. ACS Nano 2009, 3, 1952. https://doi.org/10.1021/nn9003428
  34. Nduwimana, A.; Wang, X. Q. ACS Nano 2009, 3, 1995 https://doi.org/10.1021/nn9004268
  35. Kinder, J. M.; Dorando, J. J.; Wang H.; Chan, G. K. L. Nano Lett. 2009, 9, 1980. https://doi.org/10.1021/nl900227e
  36. Hod, O.; Scuseria, G. E. Nano Lett. 2009, 9, 2619. https://doi.org/10.1021/nl900913c
  37. Biel, B.; Triozon, F.; Blase, X.; Roche, S. Nano Lett. 2009, 9, 2725. https://doi.org/10.1021/nl901226s
  38. Cantele, G.; Lee, Y. S.; Ninno, D.; Marzari, N. Nano Lett. 2009, 9, 3425. https://doi.org/10.1021/nl901557x
  39. Lee, H.; Ihm, J.; Cohen, M. L.; Louie, S. G. Nano Lett. 2010, 10, 793 https://doi.org/10.1021/nl902822s
  40. Kim, W. Y.; Kim, K. S. Acc. Chem. Res. 2010, 43, 111. https://doi.org/10.1021/ar900156u
  41. Wassmann, T.; Seitsonen, A. P.; Saitta, A. M.; Lazzeri, M.; Mauri, F. J. Am. Chem. Soc. 2010, 132, 3440. https://doi.org/10.1021/ja909234y
  42. Zheng, X. H.; Wang, X. L.; Abtew, T. A.; Zeng, Z. J. Phys. Chem. C 2010, 114, 4190. https://doi.org/10.1021/jp911203n
  43. Wu, M.; Wu, X.; Zeng, X. C. J. Phys. Chem. C 2010, 114, 3937. https://doi.org/10.1021/jp100027w
  44. Lee, Y. L.; Kim, S.; Park, C.; Ihm, J.; Son, Y. W. ACS Nano 2010, 4, 1345. https://doi.org/10.1021/nn9019064
  45. Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Nature (London) 2004, 430, 541 https://doi.org/10.1038/nature02728
  46. Eerenstein, W.; Wiora, M.; Prieto, J. L.; Mathur, N. D.; Scott, J. F. Nature Mater. 2007, 6, 348. https://doi.org/10.1038/nmat1886
  47. Lou, P.; Lee, J. Y. J. Phys. Chem. C 2009, 113, 21213 https://doi.org/10.1021/jp906558y
  48. Lou, P.; Lee, J. Y. J. Phys. Chem. C 2010, 114, 10947. https://doi.org/10.1021/jp911953z
  49. OpenMXWebsite. Ozaki, T.; Kino, H.; Yu, J.; Han, M. J.; Kobayashi, N.; Ohfuti, M.; Ishii, F.; Ohwaki, T.; Weng, H. http:// www.openmx-square.org/.
  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  51. Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993. https://doi.org/10.1103/PhysRevB.43.1993
  52. Ozaki, T. Phys. Rev. B 2003, 67, 155108. https://doi.org/10.1103/PhysRevB.67.155108
  53. Ozaki, T.; Kino, H. Phys. Rev. B 2004, 69, 195113. https://doi.org/10.1103/PhysRevB.69.195113
  54. Lou, P.; Lee, J. Y. J. Phys. Chem. C 2009, 113, 12637. https://doi.org/10.1021/jp903155r
  55. Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J.; Hou, J. G. J. Chem. Phys. 2008, 129, 174114. https://doi.org/10.1063/1.3006431
  56. Wu, F.; Kan, E.; Xiang, H.; Wei, S.; Whangbo, M.; Yang, J. Appl. Phys. Lett. 2009, 94, 223105. https://doi.org/10.1063/1.3147854

Cited by

  1. Quasiparticle energies, exciton level structures and optical absorption spectra of ultra-narrow ZSiCNRs vol.7, pp.82, 2017, https://doi.org/10.1039/C7RA09993B
  2. Nonmagnetic impurity chemistry substitution effects in zigzag silicon carbide nanoribbons vol.250, pp.7, 2012, https://doi.org/10.1002/pssb.201248608
  3. Effects of edge hydrogenation in zigzag silicon carbide nanoribbons: stability, electronic and magnetic properties, as well as spin transport property vol.1, pp.17, 2012, https://doi.org/10.1039/c3tc30173g
  4. Short‐range exact exchange effects in ultra‐narrow zigzag silicon carbide nanoribbons vol.251, pp.2, 2012, https://doi.org/10.1002/pssb.201349213