DOI QR코드

DOI QR Code

Homing Navigation Based on Path Integration with Optical Flow

광학 흐름 기반 경로 누적법을 이용한 귀소 내비게이션

  • 차영서 (연세대학교 전기전자공학부) ;
  • 김대은 (연세대학교 전기전자공학부)
  • Received : 2011.11.15
  • Accepted : 2011.12.20
  • Published : 2012.02.01

Abstract

There have been many homing navigation algorithms for robotic system. In this paper, we suggest a bio-inspired navigation model. It builds path integration based on optical flow. We consider two factors on robot movements, translational movement and rotational movement. For each movement, we found distinguishable optical flows. Based on optical flow, we estimate ego-centric robot movement and integrate the path optimally. We can determine the homing direction and distance. We test this algorithm and evaluate the performance of homing navigation for robotic system.

Keywords

References

  1. J. J. Leonard and H. F. Durrant-whyte, "Simultaneous map building and localization for an autonomous mobile robot," Intelligent Robots and Systems '91. 'Intelligence for Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International Workshop on, vol. 3, pp. 1442-1447, Nov. 1991.
  2. M. W. M. G. Dissanayake, P, Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, "A solution to the simultaneous localization and map building (SLAM) problem," Robotics and Automation, IEEE Transactions on, vol. 17, no. 3, pp. 229-241, Jun. 2001. https://doi.org/10.1109/70.938381
  3. H. Lim, J. H. Yang, Y. S. Lee, and J. G. Kim, "Indoor Single Camera SLAM using Fiducial Markers," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 15, no. 4, pp. 353-364, Apr. 2009. https://doi.org/10.5302/J.ICROS.2009.15.4.353
  4. S.-E. Yu and D. Kim, "Distance estimation method with snapshot landmark images in the robotic homing navigation," The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 275-280, Oct. 2010.
  5. S.-E. Yu and D. Kim, "Landmark vectors with quantized distance information for homing navigation," Adaptive Behavior, vol. 19, no. 2, pp. 121-141, Mar. 2011. https://doi.org/10.1177/1059712311398669
  6. S.-E. Yu and D. Kim, "Image-based homing navigation with landmark arrangement matching," Information Sciences, vol. 181, no. 16, pp. 3427-3442, Aug. 2011. https://doi.org/10.1016/j.ins.2011.04.015
  7. S.-E. Yu and D. Kim, "Analysis on occlusion problem of landmark-based homing navigation methods," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 17, no. 6, pp. 596-601, 2011. https://doi.org/10.5302/J.ICROS.2011.17.6.596
  8. S. H. Baek and D. Kim, "Surface roughness discrimination with whisker tactile sensors modeling rodent whiskers," The Journal of Korea Robotics Society, vol. 4, no. 1, pp. 34-42, 2009.
  9. S. H. Baek and D. Kim, "Surface roughness discrimination with whisker tactile sensors modeling rodent whiskers," The Journal of Institute of Electronics Engineers of Korea, vol. 47, no. 4, pp. 55-60, 2010.
  10. J.-H. Seo, H.-M. Son, and Y.-J. Lee, "New gel-type biomimetic variable-focus lens system," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 16,no. 11, pp. 1082-1088, 2010. https://doi.org/10.5302/J.ICROS.2010.16.11.1082
  11. R. Wehner, B. Michel, and P. Antonsen, "Visual navigation in insects: coupling of egocentric and geocentric information," Journal of Experimental Biology, vol. 199, no. 199, pp. 129-140, Jan. 1996.
  12. F. Wehner and F. Raber, "Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae)," Cellular and Molecular Life Sciences, vol. 35, no. 12, pp. 1569-1571, Dec. 1979. https://doi.org/10.1007/BF01953197
  13. B. Cartwright and T. Collett, "Landmark learning in bees," Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 151, no. 4, pp. 521-543, Dec. 1983. https://doi.org/10.1007/BF00605469
  14. K. Cheng, T. Collett, A. Pickhard, and R. Wehner, "The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal," Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 161, no. 3, pp. 469-475, May 1987. https://doi.org/10.1007/BF00603972
  15. H. Esch and J. Burns, "Honeybees use optic flow to measure the distance of a food source," Naturwissenschaften, vol. 82, no. 1, pp. 38-40, Jan. 1995. https://doi.org/10.1007/BF01167870
  16. D. Lambrinos, "Navigation in biorobotic agents," Ph.D. thesis, Department of Computer Science, University of Zurich, Switzerland, 1999.
  17. D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, "A mobile robot employing insect strategies for navigation," Robotics and Autonomous Systems, Special Issue: Biomimetic Robots, vol. 30, pp. 39-64, 2000. https://doi.org/10.1016/S0921-8890(99)00064-0
  18. R. Möller, "Insect visual homing strategies in a robot with analog processing," Biological Cybernetics, vol. 83, no. 3, pp. 231-243, Mar. 2000. https://doi.org/10.1007/PL00007973
  19. J. Hong, "Image-based homing," Proc. International Conf. on 601 Robotics and Automation, vol. 1, pp. 620-625, Apr. 1991.
  20. K. Weber, S. Venkatesh, and M. Srinivasan, "Insect-inspired robotic homing," Adaptive Behavior, vol. 7, no. 1, pp. 65-97, Dec. 1999. https://doi.org/10.1177/105971239900700104
  21. A. Vardy and R. Möller, "Biologically plausible visual homing methods based on optical flow techniques," Connection Science, vol. 17, no. 1-2, Dec. 2005. https://doi.org/10.1080/09540090500138259
  22. H. E. Esch, S. Zhang, M. V. Srinivasan, and J. Tautz, "Honeybee dances communicate distances measured by optic flow," Nature 411, pp. 581-583, 31 May 2001. https://doi.org/10.1038/35079072
  23. B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," Proceedings of Imaging Understanding Workshop, pp. 121-130, 1981.
  24. B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, no. 1-3, pp. 185-203, Aug. 1981. https://doi.org/10.1016/0004-3702(81)90024-2
  25. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, "High accuracy optical flow estimation based on a theory for warping," Computer Vision-ECCV 2004, vol. 3024/2004, pp. 25-36, 2004.
  26. M. Hatzitheodorou, E. A. Karabassi, G. Papaioannou, A. Boehm, and T. Theoharis, "Stereo matching using optic flow," Real-Time Imaging, vol. 6, no. 4, pp. 251-266, Aug. 2000.
  27. N. Franceschini, F. Ruffier, and J. Serres, "A bio-inspired flying robot sheds light on insect piloting abilities," Current Biology, vol. 17, no. 4, pp. 329-335, 20 Feb. 2007. https://doi.org/10.1016/j.cub.2006.12.032
  28. M. V. Srinivasan, J. S. Chahl, K. Weber, S. Venkatesh, M. G. Nagle, and S. W. Zhang, "Robot navigation inspired by principles of insect vision," Robotics and Autonomous Systems, vol. 26, no. 2-3, pp. 203-216, Feb. 1999. https://doi.org/10.1016/S0921-8890(98)00069-4
  29. J. J. Koenderink and A. J. Doorn, "Facts on optic flow," Biological Cybernetics, vol. 56, no. 4, pp. 247-254, 1987. https://doi.org/10.1007/BF00365219
  30. M. O. Franz and H G. Krapp, "Wide-field, motionsensitive neurons and matched filters for optic flow fields," Biological Cybernetics, vol. 83, no. 3, pp. 185-197, 2000. https://doi.org/10.1007/s004220000163
  31. R. Möller and A. Vardy, "Local visual homing by matched-filter descent in image distances," Biological Cybernetics, vol. 95, no. 5, pp. 413-430, 2006. https://doi.org/10.1007/s00422-006-0095-3
  32. F. Ruffier, S. Viollet, S. Amic, and N. Franceschini, "Bio-inspired optical flow circuits for the visual guidance of micro air vehicles," Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, vol. 3, III, pp. 846-849, May 2003.
  33. N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, "From insect vision to robot vision [and Discussion]," Philosophical transactions of the royal society biological sciences, vol. 337, no. 1281, pp. 283-294, Sep. 1992. https://doi.org/10.1098/rstb.1992.0106
  34. H. G. Krapp, "Neuronal matched filters for optic flow processing in flying insects," International Review of Neurobiology, vol. 44, pp. 93-120, 1999. https://doi.org/10.1016/S0074-7742(08)60739-4
  35. M. Herman, G. S. Young, T.-H. Hong, and J. C. S. Yang, "New visual invariant for obstacle detection using optical flow induced from general motion," Proc. of IEEE Workshop Appl. Comput. Vision, pp. 100-109, 1992.
  36. S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts, "Combined optic-flow and stereo-based navigation of urban canyons for a UAV," Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 3309-3316 Aug. 2005.