DOI QR코드

DOI QR Code

A study on preparation of activated carbon from waste tire

폐타이어로부터 활성탄 제조에 관한 연구

  • Received : 2012.01.10
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

In this study we investigated the manufacturing method for the activated carbon using the char from the pyrolysis of waste tire. The physical activation method using the steam in the fixed-bed quartz reactor was used for preparation of activated carbon. The primary experiment parameters are the activation temperature, activation time, heating rate, and the injection quantity of active agent. From the results of pore distribution of activated carbon, the micropore which was made in $850^{\circ}C$ of activation temperature, $5^{\circ}C$/min of heating rate, and 3 hours of activation time was developed in biggest quantity, and mesopore and macropore were developed in the biggest quantity too. The optimum conditions for producing the activated carbon using the pyrolysis residue were $850^{\circ}C$ of activation temperature, 3 hours of activation time, $5^{\circ}C$/min of heating rate, and 3 g $H_2O/char-g{\cdot}hr$ of active agent through this study. The produced activated carbon in these conditions showed that the potentiality of utilization as activated carbon because the BET specific surface area was $517.6m^2/g$ and total pore volume was $0.648cm^3/g$.

본 연구에서는 폐타이어 열분해 잔류물(char)을 이용하여 활성탄을 제조하기 위한 연구를 수행하였다. 활성탄 제조는 고정층 석영관 반응기에서 수증기를 이용한 물리적 활성화 방법을 사용하였으며, 주요한 실험 변수는 활성화 온도, 활성화 시간, 승온속도 및 활성화제의 주입량 등이다. 활성탄 제조 후 세공분포를 분석한 결과, 활성화 온도 $850^{\circ}C$, 승온속도 $5^{\circ}C$/min, 활성화 시간 3 hr의 조건에서 제조한 활성탄이 미세세공(micropore), 중간세공(mesopore) 및 거대세공(macropore)이 가장 많이 발달함을 알 수 있었다. 본 연구결과, 폐타이어 열분해 잔류물을 이용한 활성탄 제조의 최적 조건은 활성화 온도 $850^{\circ}C$, 활성화 시간 3 hr, 승온속도 $5^{\circ}C$/min, 활성화제 공급량 3 g $H_2O/char-g{\cdot}hr$ 등으로 조사되었다. 이 조건에서 제조한 활성탄의 BET 비표면적은 $517.6m^2/g$, 총 세공부피 $0.648cm^3/g$으로 나타나 활성탄으로서의 사용 가능성을 확인할 수 있었다.

Keywords

References

  1. Jin-kuk Kim, Daeseok Bang, "Development of mass production of the thermoplastic elastomer using waste tire", Cyeongsang University a master dissertation, (2010)
  2. C. I. Sainz-Diaz, A. J. Griffiths, "Activated carbon from solid wastes using a pilot-scale batch flaming pyrolyser", Fuel, vol. 79, pp.1863-1871, (2008) https://doi.org/10.1016/S0016-2361(00)00052-1
  3. C. Roy, A. Chaala, H. Darmstadt, "The vacuum pyrolysis of used tires: End-uses for oil and carbon black products", Journal of analytical and applied pyrolysis, vol. 51, pp.201-221, (1999) https://doi.org/10.1016/S0165-2370(99)00017-0
  4. Suat Ucar, Selhan Karagoz, Ahmet R. Okan, Jale Yanik, "Evaluation of two different scrap tires as hydrocarbon source by pyrolysis", Fuel, vol. 84, pp.1884-1892, (2005) https://doi.org/10.1016/j.fuel.2005.04.002
  5. Donghoon Choi , "A study on manufacture of activated carbon and Adsorption characteristics of organic matter based coal", Chonbuk University a doctoral dissertation, (2001)
  6. Allen JL, Gatz JL, Eklund PC, "Applications for activated carbons from used tires: butane working capacity", Carbon, vol. 37, pp.1485-1489, (1999) https://doi.org/10.1016/S0008-6223(99)00011-1
  7. G. San Miguel, G.D. Fowler, "The leaching of inorganic species from activated carbons produced from waste tyre rubber", Water research, vol. 36, pp.1939-1946, (2002) https://doi.org/10.1016/S0043-1354(01)00422-5
  8. Young-tae Park, "Activated carbon technology", Donghwa technology publishing Co, pp.157-164, (2007)
  9. Juan F. Gonzalez , Jose´ M. Encinar, Carmen M. Gonza´lez-Garcia, "Preparation of activated carbons from used tyres by gasification with steam and carbon dioxide", Applied Surface Science, vol. 252, pp.5999-6004, (2006) https://doi.org/10.1016/j.apsusc.2005.11.029
  10. P. Ariyadejwanich, W. Tanthapanichakoon, K. Nakagawa, S.R. Mukai, H. Tamon, "P reparation and characterization of mesoporous activated carbon from waste tires", Carbon, vol. 41, pp.157-164, (2003) https://doi.org/10.1016/S0008-6223(02)00267-1
  11. Artur P. Terzyk, "The influence of carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbon and the temperature dependence of adsorption kinetics at the neutral pH", Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol. 177, pp.23-45, (2001) https://doi.org/10.1016/S0927-7757(00)00594-X
  12. A. G. Rowley, F. M. Husband, A. B. Cunningham, "Mechanisms of metal adsorption from aqueous solutions by waste tire rubber" Water research, vol. 18, pp.981-984, (1984) https://doi.org/10.1016/0043-1354(84)90248-3

Cited by

  1. A Study on the Pore Structure Control with Heat Treatment Conditions of Waste Tire Carbon Residue vol.22, pp.2, 2013, https://doi.org/10.7844/kirr.2013.22.2.11