DOI QR코드

DOI QR Code

Characteristics of Surface Ozone in a Valley Area Located Downwind from Coastal Cities under Sea-breeze Condition: Seasonal Variation and Related Winds

연안 대도시 해풍 풍하측 계곡지역의 지표오존 분포 특성: 계절변화와 바람과의 관계

  • Kang, Jae-Eun (Division of Earth Environmental System, Pusan National University) ;
  • Oh, In-Bo (Environmental Health Center, University of Ulsan) ;
  • Song, Sang-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Division of Earth Environmental System, Pusan National University)
  • 강재은 (부산대학교 지구환경시스템학부) ;
  • 오인보 (울산대학교 환경보건센터) ;
  • 송상근 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 지구환경시스템학부)
  • Received : 2011.05.20
  • Accepted : 2012.01.26
  • Published : 2012.02.29

Abstract

The seasonal variations of ozone ($O_3$) concentrations were investigated with regard to the relationship between $O_3$ and wind distributions at two different sites (Jung Ang (JA): a semi-closed topography and Seo Chang (SC): a closed topography) within a valley city (Yangsan) and their comparison between these sites (JA and SC) and two non-valley sites (Dae Jeo (DJ) and Sang Nam (SN)) located downwind from coastal cities (Busan and Ulsan). This analysis was performed using the data sets of hourly $O_3$ concentrations, meteorological factors (especially, wind speed and direction), and those on high $O_3$ days exceeding the 8-h standard (60 ppb) during 2008-2009. In summer and fall (especially in June and October), the monthly mean values of the daily maximum $O_3$ concentrations and the number of high $O_3$ days at JA (and SC) were relatively higher than those at DJ (and SN). The increase in daytime $O_3$ concentrations at JA in June was likely to be primarily impacted by the transport of $O_3$ and its precursors from the coastal emission sources in Busan along the dominant southwesterly winds (about 5 m/s) under the penetration of sea breeze condition, compared to other months and sites. Such a phenomenon at SC in October was likely to be mainly caused by the accumulation of $O_3$ and its precursors due to the relatively weak winds under the localized stagnant weather condition rather than the contribution of regional transport from the emission sources in Busan and Ulsan.

Keywords

References

  1. 국립환경과학원, 2011, 대기오염물질 배출량, http://airemiss.nier.go.kr/main.jsp.
  2. 김영성, 1996, 1991-1993년 사이 우리나라의 오존 농도 변화, 한국대기환경학회지, 12(1), 55-66.
  3. 김영성, 2000, 우리나라의 오존농도 변화 추이와 주요 인자, 한국대기환경학회지, 16(6), 607-623.
  4. 김유근, 문윤섭, 오인보, 황미경, 2002, 서울 및 부산지역에서 기온과 국지풍이 지표 고농도 오존 발생에 미치는 영향, 한국기상학회지, 38(4), 319-331.
  5. 김철희, 송창근, 박순웅, 1999, 종관 바람장에 따른 경인 지역에서의 지상 오존($O_{3}$) 농도 분포 모의, 한국기상학회지, 35(3), 441-456.
  6. 서명석, 박경윤, 이호근, 장광미, 강창희, 허철구, 김영준, 1995, 청정지역과 도시지역의 오존농도 특성 연구, 한국대기환경학회지, 11(3), 253-262.
  7. 오인보, 김유근, 2002, 한반도 주요 대도시지역의 지표오존 특성 : 추세, 일변화, 월변화, 수평분포, 한국대기환경학회지, 18(4), 253-264.
  8. 정용승, 정재섭, 1991, 서울 수도권 지역의 광화학오존에 관한 연구, 한국대기환경학회지, 7(3), 169-179.
  9. 정우식, 이화운, 2000, 연안복잡지역에서 해풍시작에 대한 지형의 영향, 한국기상학회지, 36(2), 245-256.
  10. 하훈, 이상득, 이중기, 박찬오, 문태룡, 2006, 광양만권의 오존농도 특성과 시․공간적 분포, 한국대기환경학회지, 22(5), 642-652.
  11. 한국도로공사, 2011, 구간별 평일/주말 교통량, http://www.ex.co.kr/portal/index.jsp.
  12. 환경부, 2009, 대기환경연보(2008), 291-295.
  13. Arteta, J., Cautenet, S., 2007, Study of ozone distribution over the south-eastern France (ESCOMPTE campaign): discrimination between ozone tendencies due to chemistry and to transport, J. Atmos. Chem., 58(2), 111-130. https://doi.org/10.1007/s10874-007-9081-y
  14. Boucouvala, D., Bornstein, R., 2003, Analysis of transport patterns during an SCOS97-MARSTO episode, Atmos. Environ., 37(2), S73-S94.
  15. Carroll, J. J., Dixon, A. J., 2002, Regional scale transport over complex terrain, a case study: tracing the Sacramento plume in the Sierra Nevada of California, Atmos. Environ., 36(23), 3745-3758. https://doi.org/10.1016/S1352-2310(02)00305-9
  16. Corsmeier, U., Kossmann, M., Kalthoff, N., Sturman, A., 2006, Temporal evolution of winter smog within a nocturnal boundary layer at Christchurch, New Zealand, Meteorol. Atmos. Phys., 91(1-4), 129-148. https://doi.org/10.1007/s00703-005-0111-5
  17. Derwent, R. G., 2000, Ozone formation downwind of an industrial source of hydrocarbons under European conditions, Atmos. Environ., 34(22), 3689-3700. https://doi.org/10.1016/S1352-2310(00)00081-9
  18. Hwang, M. K., Kim, Y. K., Oh, I. B., Lee, H. W., Kim, C. H., 2007, Identification and interpretation of representative ozone distributions in association with the sea breeze from different synoptic winds over the coastal urban area in Korea, J. Air. Waste. Manage., 57(12), 1480-1488. https://doi.org/10.3155/1047-3289.57.12.1480
  19. Kalthoff, N., Kottmeier, C., Thqrauf, J., Corsmeier, U., SaÏd, F., Fréjafon, E., Perros, P. E., 2005, Mesoscale circulation systems and ozone concentrations during SCOMPTE: a case study from IOP 2b, Atmos. Res., 74, 355-380. https://doi.org/10.1016/j.atmosres.2004.04.006
  20. Lee, S. H., Sung, K. H., Lee, H. W., 2008, Impact of regional trans-boundary ozone associated with complex terrain on urban air quality, Atmos. Environ., 42(32), 7384-7396. https://doi.org/10.1016/j.atmosenv.2008.06.027
  21. Lee, S. M., Princevac, M., Mitsutomi, S., Cassmassi, J., 2009, MM5 simulations for air quality modeling: an application to a coastal area with complex terrain, Atmos. Environ., 43(2), 447-457. https://doi.org/10.1016/j.atmosenv.2008.07.067
  22. Lin, C. Y., Wang, Z., Chou, C. C. K., Chang, C. C., Liu, S. C., 2007, A numerical study of an autumn high ozone episode over southwestern Taiwan, Atmos. Environ., 41(17), 3684-3701. https://doi.org/10.1016/j.atmosenv.2006.12.050
  23. Lin, X., Roussel, P. B., Laszlo, S., Taylor, R., Melo, O. T., 1996, Impact of Toronto urban emission on ozone levels downwind, Atmos. Environ., 30(12), 2177-2193. https://doi.org/10.1016/1352-2310(95)00130-1
  24. Liu, H., Chan, J. C. L., 2002, An investigation of air-pollutant patterns under sea-land breezes during a severe air-pollution episode in Hong Kong, Atmos. Environ., 36(4), 591-601. https://doi.org/10.1016/S1352-2310(01)00504-0
  25. Lu, R., Turco, R. P., 1995, Air pollutant transport in a coastal environment-II. Three-dimensional simulations over Los Angeles Basin, Atmos. Environ., 29(13), 1499-1518. https://doi.org/10.1016/1352-2310(95)00015-Q
  26. McKendry, I. G., Lundgren, J., 2000, Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review, Prog. Phys. Geog., 24(3), 329-354. https://doi.org/10.1177/030913330002400302
  27. Melas, D., Ziomas, I. C., Zerefos, C. S., 1995, Boundary layer dynamics in an urban coastal environment under sea breeze conditions, Atmos. Environ., 29(24), 3605-3617. https://doi.org/10.1016/1352-2310(95)00140-T
  28. National Research Council (NRC), 1991, Rethinking the ozone problem in urban and regional air pollution, National Academy Press, Washington, D.C., 98-107.
  29. Orgill, M. M., 1989, Early morning ventilation of a gaseous tracer from a mountain valley, J. Appl. Meteorol., 28(7), 636-651. https://doi.org/10.1175/1520-0450(1989)028<0636:EMVOAG>2.0.CO;2
  30. Salmond, J. A., McKendry, I. G., 2005, A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality, Prog. Phys. Geog., 29(2), 171-188. https://doi.org/10.1191/0309133305pp442ra
  31. Savov, P. B., Skakalova, T. S., Kolev, I. N., Ludwig, F. L., 2002, Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in mountain valleys, J. Appl. Meteorol., 41(5), 528-541. https://doi.org/10.1175/1520-0450(2002)041<0528:LIOTTA>2.0.CO;2
  32. Simpson, J. E., Mansfield, D. A., Milford, J. R., 1977, Inland penetration of sea-breeze fronts, Q. J. Roy. Meteor. Soc., 103(435), 47-76. https://doi.org/10.1002/qj.49710343504
  33. Simpson, J. E., 1994, Sea breeze and local winds, Cambridge University Press, New York, 85-94.
  34. Wang, T., Wu, Y. Y., Cheung, T. F., Lam, K. S., 2001, A study of surface ozone and the relation to complex wind flow in Hong Kong, Atmos. Environ., 35(18), 3203-3215. https://doi.org/10.1016/S1352-2310(00)00558-6