DOI QR코드

DOI QR Code

PATTERN FORMATION FOR A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH CROSS DIFFUSION

  • Sambath, M. (DEPARTMENT OF MATHEMATICS, BHARATHIAR UNIVERSITY) ;
  • Balachandran, K. (DEPARTMENT OF MATHEMATICS, BHARATHIAR UNIVERSITY)
  • Received : 2012.09.27
  • Accepted : 2012.12.07
  • Published : 2012.12.25

Abstract

In this work, we analyze the spatial patterns of a predator-prey system with cross diffusion. First we get the critical lines of Hopf and Turing bifurcations in a spatial domain by using mathematical theory. More specifically, the exact Turing region is given in a two parameter space. Our results reveal that cross diffusion can induce stationary patterns which may be useful in understanding the dynamics of the real ecosystems better.

Keywords

References

  1. D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology. 83 (2002), 28-34. https://doi.org/10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
  2. M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Math. Comput. Modelling. 51 (2010), 44-52. https://doi.org/10.1016/j.mcm.2009.07.015
  3. F. Bartumeus, D. Alonso and J. Catalan, Self-organized spatial structures in a ratio-dependent predator-prey model, Physica A. 295 (2001), 53-57. https://doi.org/10.1016/S0378-4371(01)00051-6
  4. D.L. Benson, J. Sherratt and P.K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull.Math.Biol. 55 (1993), 365-384. https://doi.org/10.1007/BF02460888
  5. J.M. Chung and E. Peacock-Lpez, Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion, J. Chem. Phys. 127 (2007), 174903. https://doi.org/10.1063/1.2784554
  6. J.M. Chung and E. Peacock-Lpez, Cross-diffusion in the templator model of chemical self-replication, Phys. Let. A. 371 (2007), 41-47. https://doi.org/10.1016/j.physleta.2007.04.114
  7. D.L. DeAngelis, R.L. Goldstein and R.V. O'Neill, A model for trophic interaction, Ecology. 56 (1975), 881-892. https://doi.org/10.2307/1936298
  8. B. Dubey , B. Das and J. Hussain, A predator - prey interaction model with self and cross-diffusion, Ecol. Model. 141 (2001), 67-76. https://doi.org/10.1016/S0304-3800(01)00255-1
  9. Y.H. Fan and W.T. Li, Global asymptotic stability of a ratio-dependent predator prey system with diffusion, J.Comput.Appl.Math. 188 (2006), 205-227. https://doi.org/10.1016/j.cam.2005.04.007
  10. M.R. Garvie, Finite-Difference schemes for reaction diffusion equations modelling predator prey interactions in MATLAB, Bull.Math.Biol. 69 (2007), 931-956. https://doi.org/10.1007/s11538-006-9062-3
  11. C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey model, Bull.Math.Biol. 61 (1999), 19-32. https://doi.org/10.1006/bulm.1998.0072
  12. S.A. Levin, T.M. Powell and J.H. Steele, Patch Dynamics, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1993.
  13. P.P. Liu and Z. Jin, Pattern formation of a predator-prey model, Nonlinear Anal. Hybrid Syst. 3 (2009), 177-183. https://doi.org/10.1016/j.nahs.2008.12.004
  14. Y. Lou andW. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations. 154 (1999), 157-190 . https://doi.org/10.1006/jdeq.1998.3559
  15. E.A. McGehee and E. Peacock-Lpez, Turing patterns in a modified Lotka Volterra model, Phys. Lett. A. 342 (2005), 90-98. https://doi.org/10.1016/j.physleta.2005.04.098
  16. A. Morozov, S.Petrovskii and B.L. Li, Bifurcations and chaos in a predator-prey system with the allee effect, Proc. R. Soc. Lond. B 271 (2004), 1407-1414. https://doi.org/10.1098/rspb.2004.2733
  17. J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
  18. M. Sambath, S. Gnanavel and K. Balachandran, Stability and Hopf bifurcation of a diffusive predator-prey model with predator saturation and competition, Anal. Appl. 1-18 (2012) DOI:10.1080/00036811.2012.742185
  19. J.A. Sherratt, Turing bifurcations with a temporally varying diffusion coefficient, J.Math.Biol. 33 (1995), 295-308.
  20. X.K. Sun, H.F. Huo and H. Xiang, Bifurcation and stability analysis in predator-prey model with a stagestructure for predator, Nonlinear Dyn. 58 (2009), 497-513. https://doi.org/10.1007/s11071-009-9495-y
  21. A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 237 (1952), 37-72. https://doi.org/10.1098/rstb.1952.0012

Cited by

  1. SPATIOTEMPORAL DYNAMICS OF A PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE vol.3, pp.1, 2012, https://doi.org/10.11948/2013006