Comparison of in-situ $MgB_2$ Superconducting Properties Under Different Annealing Environment

열처리조건 변화에 따른 in-situ $MgB_2$ 초전도 특성 비교

  • Chung, K.C. (Korea Institute of Materials Science) ;
  • Sinha, B. B. (Korea Institute of Materials Science) ;
  • Chang, S.H. (Korea Institute of Materials Science) ;
  • Kim, J.H. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong) ;
  • Dou, S. X. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong)
  • Received : 2012.11.17
  • Accepted : 2012.12.17
  • Published : 2012.12.31

Abstract

Effect of mixed gas and additional Mg powder in an annealing process of the $MgB_2$ is investigated. Four different type of samples were prepared, each in different annealing environment of Ar, $Ar+4%H_2$, Ar with Mg powder and $Ar+4%H_2$ with Mg powder. Different annealing environment did not affect the electron-phonon interaction which is reflected from the same superconducting transition of 36.6 K for all samples. The reducing effect of hydrogen is clearly depicted from the presence of excess Mg in sample synthesized in $Ar+4%H_2$ gas implying the reduced rate of reaction between Mg and B. This has manifested itself in terms of slightly increased high-field critical current density of the sample. In contrast, the sample synthesized in $Ar+4%H_2$ with Mg powder, has shown overall enhancement in the superconducting properties as presented by higher diamagnetic saturation and critical current density.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001). https://doi.org/10.1038/35065039
  2. S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson and P.C. Canfield, Phys. Rev. Lett. 86 (2001) 1877. https://doi.org/10.1103/PhysRevLett.86.1877
  3. D.K. Finnemore, J.E. Ostenson, S.L. Bud'ko, G. Lapertot and P.C. Canfield, Phys. Rev. Let. 86 (2001) 2420. https://doi.org/10.1103/PhysRevLett.86.2420
  4. P.C. Canfield, D.K. Finnemore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot, C. E. Cunningham and C. Petrovic, Phys. Rev. Lett. 86 (2001) 2423. https://doi.org/10.1103/PhysRevLett.86.2423
  5. K. Vinod, R.G. Abhilash Kumar and U. Syamaprasad, Supercond. Sci. Technol. 20 (2007) R1-R3. https://doi.org/10.1088/0953-2048/20/1/R01
  6. K.H.P. Kim, J.H. Choi, C.U. Jung, P. Chowdhury, H.S. Lee, M.S. Park, H.J. Kim, J.Y. Kim, Z. Du, E.M. Choi, M.S. Kim, W.N. Kang, S.I. Lee, G.Y. Sung and J.Y. Lee, Phys. Rev. B, 65 (2002) 100510. https://doi.org/10.1103/PhysRevB.65.100510
  7. A.K. Pradhan, X.Z. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito and H. Ihara, Phys. Rev. B 64 (2001) 212509. https://doi.org/10.1103/PhysRevB.64.212509
  8. A.K. Pradhan, X.Z. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito and H. Ihara, Phys. Rev. B 65 (2002) 144513. https://doi.org/10.1103/PhysRevB.65.144513
  9. S. Okuma, S. Togo, and K. Amemori, Phy. Rev. B 67 (2003) 172508. https://doi.org/10.1103/PhysRevB.67.172508
  10. B.A. Glowacki, M. Majoros, M. Vickers, J.E. Evetts, Y. Shi and I. McDougall, Supercond. Sci. Technol. 14 (2001) 193. https://doi.org/10.1088/0953-2048/14/4/304
  11. J. M. Rowell, Supercond. Sci. Technol. 16 (2003) R17. https://doi.org/10.1088/0953-2048/16/6/201
  12. P. A. Sharma, N. Hur, Y. Horibe, C. H. Chen, B. G. Kim, S. Guha, Marta Z. Cieplak, and S-W. Cheong, Phys. Rev. Lett. 89 (2002) 167003. https://doi.org/10.1103/PhysRevLett.89.167003
  13. A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Willis, D. E. Peterson and F. M. Mueller, N. O. Moreno, J. D. Thompson, V. F. Nesterenko, and S. S. Indrakanti, J. Appl. Phys. 92 (2002) 351. https://doi.org/10.1063/1.1479470
  14. C.P. Bean, Phys. Rev. Lett. 8 (1962) 250. https://doi.org/10.1103/PhysRevLett.8.250