Superconducting Strip Ion Detectors for Time-of-flight Mass Spectrometer

  • Zen, N. (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Suzuki, K. (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Shiki, S. (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Ukibe, M. (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Koike, M. (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Casaburi, A. (The National Research Council (CNR)) ;
  • Ejrnaes, M. (The National Research Council (CNR)) ;
  • Cristiano, R. (The National Research Council (CNR)) ;
  • Ohkubo, M. (National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2012.12.17
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Superconducting detectors are promising as ion detectors for time-of-flight mass spectrometers (TOF MS). They can achieve mass-independent detection efficiency even for macromolecular bombardments, because output signals are produced through the deposited kinetic energy at ion impact instead of secondary electron emission that is the ion detection mechanism of conventional microchannel plate (MCP) detectors or secondary electron multipliers (SEM). Among the superconducting detectors, the superconducting strip ion detectors (SSIDs), which consist of several hundreds of superconducting lines with a width of a few hundreds nm and a thickness of a few tens of nm, have a fast response time of less than 1 ns. Inherently, the response time of SSIDs is determined by kinetic inductance, so that it was difficult to realize a fast SSID with a large detection area. However, we succeeded in realizing the detector size up to $5{\times}5mm^2$ without response time degradation by using a parallel configuration.

Keywords

References

  1. M. Tarkhov, J. Claudon, J. Ph. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol'tsman, "Ultrafast reset time of superconducting single photon detectors", Appl. Phys. Lett., 92, 241112 (2008). https://doi.org/10.1063/1.2945277
  2. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters", Appl. Phys. Lett., 88, 111116 (2006). https://doi.org/10.1063/1.2183810
  3. F. Marsili, F. Bellei, F. Najafi, A. Dane, E. A. Dauler, R. J. Molnar, and K. Berggren, "Efficient Single Photon Detection from 500 nm to $5{\mu}m$ Wavelength", Nano Lett., 12, 4799-4804 (2012). https://doi.org/10.1021/nl302245n
  4. A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il'in, M. Hofherr, M. Siegel, A. Semenov, and H.-W. Hubers, "Tantalum nitride superconducting single-photon detectors with low cut-off energy", Appl. Phys. Lett., 100, 062601 (2012). https://doi.org/10.1063/1.3684243
  5. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, "Superconducting $a-W_xSi_{1-x}$ nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm", Appl. Phys. Lett., 98, 251105 (2011). https://doi.org/10.1063/1.3600793
  6. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, "Multichannel SNSPD system with high detection efficiency at telecommunication wavelength", Opt. Lett., 35, 2133 (2010). https://doi.org/10.1364/OL.35.002133
  7. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leon, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths", Nat. Photonics, 2, 302-306, (2008). https://doi.org/10.1038/nphoton.2008.51
  8. M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol'tsman, "A cascade switching superconducting single photon detector", Appl. Phys. Lett., 91, 262509 (2007). https://doi.org/10.1063/1.2828138
  9. G. Fraser, "The ion detection efficiency of microchannel plates (MCPs)", Int. J. Mass Spectrom., 215, 13-30 (2002). https://doi.org/10.1016/S1387-3806(01)00553-X
  10. I. Gilmore and M. Seah, Int. J. Mass Spectrom., "Ion detection efficiency in SIMS:: Dependencies on energy, mass and composition for microchannel plates used in mass spectrometry", 202, 217-229 (2000). https://doi.org/10.1016/S1387-3806(00)00245-1
  11. G. Westmacott, M. Frank, SE. Labov, and WH. Benner, "Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions", Rapid Commun. Mass Spectrom., 14, 1854-1861 (2000). https://doi.org/10.1002/1097-0231(20001015)14:19<1854::AID-RCM102>3.0.CO;2-M
  12. K. Suzuki, S. Shiki, M. Ukibe, M. Koike, S. Miki, Z. Wang, and M. Ohkubo, "Hot-Spot Detection Model in Superconducting Nano-Stripline Detector for keV Ions", Appl. Phys. Express, 4, 083101 (2011). https://doi.org/10.1143/APEX.4.083101
  13. R. Cristiano, A. Casaburi, E. Esposito, M. Ejrnaes, S. Pagano, K. Suzuki, N. Zen, and M. Ohkubo, "Parallel Superconducting Strip-Line Detectors for Time-offlight Mass Spectrometry", J. Low Temp. Phys., 167, 979-984 (2012). https://doi.org/10.1007/s10909-012-0531-9
  14. A. Casaburi, M. Ejrnaes, N. Zen, M. Ohkubo, S. Pagano, and R. Cristiano, "Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis", Appl. Phys. Lett., 98, 023702 (2011). https://doi.org/10.1063/1.3537808
  15. N. Zen, A. Casaburi, S. Shiki, K. Suzuki, M. Ejrnaes, R. Cristiano, and M. Ohkubo, "1 mm ultrafast superconducting stripline molecule detector", 95, 172508 (2009). https://doi.org/10.1063/1.3256220
  16. A. Casaburi, N. Zen, K. Suzuki, M. Ejrnaes, S. Pagano, R. Cristiano, and M. Ohkubo, "Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions", Appl. Phys. Lett., 94, 212502 (2009). https://doi.org/10.1063/1.3142419
  17. S. Shiki, M. Ukibe, R. Maeda, M. Ohkubo, Y. Sato, and S. Tomita, "Energy resolution improvement of superconducting tunnel junction particle detectors with infrared-blocking filters", Nucl. Instr. Meth. Phys. Res. A, 595, 391-394 (2008). https://doi.org/10.1016/j.nima.2008.07.078
  18. D. K. Liu, S. J. Chen, L. X. You, Y. L. Wang, S. Miki, Z. Wang, X. M. Xie, and M. H. Jiang, "Nonlatching Superconducting Nanowire Single-Photon Detection with Quasi-Constant-Voltage Bias", Appl. Phys. Express, 5, 125202 (2012). https://doi.org/10.1143/APEX.5.125202