Evaluation of the Radiochromic Film Dosimetry for a Small Curved Interface

휘어진 경계에서의 좁은 영역에 대한 Radiochromic 필름 도시메트리 평가

  • Kang, Sei-Kwon (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Park, Soah (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Hwang, Taejin (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Cheong, Kwang-Ho (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Han, Taejin (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kim, Haeyoung (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Lee, Me-Yeon (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kim, Kyoung Ju (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Bae, Hoonsik (Department of Radiation Oncology, Hallym University College of Medicine)
  • 강세권 (한림대학교 의과대학 방사선종양학교실) ;
  • 박소아 (한림대학교 의과대학 방사선종양학교실) ;
  • 황태진 (한림대학교 의과대학 방사선종양학교실) ;
  • 정광호 (한림대학교 의과대학 방사선종양학교실) ;
  • 한태진 (한림대학교 의과대학 방사선종양학교실) ;
  • 김해영 (한림대학교 의과대학 방사선종양학교실) ;
  • 이미연 (한림대학교 의과대학 방사선종양학교실) ;
  • 김경주 (한림대학교 의과대학 방사선종양학교실) ;
  • 배훈식 (한림대학교 의과대학 방사선종양학교실)
  • Received : 2012.11.19
  • Accepted : 2012.11.28
  • Published : 2012.12.31

Abstract

A tumor on the eyelid is often treated using a high-energy electron beam, with a metallic eye shield inserted between the eyelid and the eyeball to preserve the patient's sight. Pretreatment quality assurance of the inner eyelid dose on the metallic shield requires a very small dosimetry tool. For enhanced accuracy, a flexible device fitting the curved interface between the eyelid and the shield is also required. The radiochromic film is the best candidate for this device. To measure the doses along the curved interface and small area, a 3-mm-wide strip of EBT2 film was inserted between the phantom eyelid and the shield. After irradiation with 6 MeV electron beams, the film was evaluated for the dose profile. An acrylic eye shield of the same size as the real eye shield was machined, and CT images free from metal artifacts were obtained. Monte Carlo simulation was performed on the CT images, taking into account eye shield material, such as tungsten, aluminum, and steel. The film-based interface dose distribution agreed with the MC calculation within 2.1%. In the small (millimeter scale) and curved region, radiochromic film dosimetry promises a satisfactory result with easy handling.

눈꺼풀에 발생한 종양의 치료를 위해서는 종종 고에너지 전자선이 이용되며, 이 경우 환자의 시력 보호를 위해 금속차폐체를 눈꺼풀과 안구 사이에 삽입하고 방사선 치료를 시행한다. 차폐체에 접한 눈꺼풀 안쪽의 방사선량 확인을 위해서는 매우 작은 측정도구가 필요하며, 굽은 경계면의 특성상 유연한 측정도구가 바람직한데, radiochromic 필름 도시메트리는 이 목적에 매우 적합하다. 작으면서도 휘어진 경계면을 따라서 선량을 측정하기 위해, 눈꺼풀 팬텀과 차폐체 사이에 3-mm 폭의 EBT2 필름 띠를 삽입하고, 6MeV의 전자선을 조사 후, 선량분포를 얻었다. 금속차폐체와 동일한 크기로 아크릴 재질의 차폐체를 제작하여, 금속인공영상물이 없는 CT 영상을 얻은 후, 이를 이용하여 몬테칼로 전산모사를 수행하였다. 전산모사에서는 실제 안구차폐체의 재질을 따라 텅스텐, 알루미늄 및 스테인레스 스틸 등의 물질 정보를 이용하였다. 이렇게 얻은 전산모사 결과는 필름 측정과 2.1% 내에서 일치하였다. 밀리미터 크기 정도로 작고 또한 휘어진 영역에서 radiochromic 필름 도시메트리는 취급도 용이할 뿐만 아니라 만족스런 정확도를 보여주고 있다.

Keywords

References

  1. Shiu AS, Tung SS, Gastorf RJ, Hogstrom KR, Morrison WH, Peters LJ: Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment. Int J Radiat Oncol Biol Phys 35:599-604 (1996) https://doi.org/10.1016/S0360-3016(96)80024-1
  2. Weaver RD, Gerbi BJ, Dusenbery KE: Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams. Int J Radiat Oncol Biol Phys 41:233-237 (1998) https://doi.org/10.1016/S0360-3016(97)00905-X
  3. Zhou P, Ng AK, Silver B, Li S, Hua L, Mauch PM: Radiation therapy for orbital lymphoma Int J Radiat Oncol Biol Phys 63:866-871 (2005) https://doi.org/10.1016/j.ijrobp.2005.03.005
  4. Yamashita H, Nakagawa K, Asari T, Murakami N, Igaki H, Ohtomo K: Radiotherapy for 41 patients with stages I and II MALT lymphoma: a retrospective study. Radiother Oncol 87: 412-417 (2008) https://doi.org/10.1016/j.radonc.2008.03.012
  5. Soares CG: Radiochromic film dosimetry. Radiat Meas 41: S100-S116 (2007)
  6. Childress NL, Vantreese R., Kendall R: DoseLab v.4.0.0: dose comparison software package for medical physics. The University of Texas M.D. Anderson Cancer Center, Houston (2004)
  7. Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR: BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22:503-524 (1995) https://doi.org/10.1118/1.597552
  8. Kawrakow I: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27:485-498 (2000) https://doi.org/10.1118/1.598917
  9. Lee KY, Fung KKL, Kwok CS: Application of high-resolution radiochromic film dosimetry in verifying a small-field stereotactic radiosurgery plan. Appl Radiat Isotopes 64:934-939 (2006) https://doi.org/10.1016/j.apradiso.2006.03.011
  10. Wong CJ, Ackerly T, He C, et al: Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters. Radiat Meas 44:249-256 (2009) https://doi.org/10.1016/j.radmeas.2009.03.012
  11. Ramaseshan R, Kohli KS, Zhang TJ, et al: Performance characteristics of a micro MOSFET as an in vivo dosimeter in radiation therapy. Phys Med Biol 49:4031-4048 (2004) https://doi.org/10.1088/0031-9155/49/17/014