DOI QR코드

DOI QR Code

Relationships between pH, $NO_3{^-}$ and $PO{_4}^{3-}$ and phytoplankton distribution in the upper stream of Dorim-cheon

도림천 상류의 pH, $NO_3{^-}$, $PO{_4}^{3-}$와 식물성 플랑크톤 분포와의 관계

  • Received : 2012.03.26
  • Accepted : 2012.05.25
  • Published : 2012.05.31

Abstract

The stream has various environments and they are serving as main habitats of aquatic organisms. The distribution of phytoplankton is affected by water environment, especially pH, nitrogen and phosphorus. To reveal the relationship between phytoplankton distribution and water environment, we measured pH, $NO_3{^-}$ and $PO{_4}^{3-}$ concentration, and abundance of phytoplankton at 10 sites in the upper stream of Dorim-cheon. pH value ranged 5.05 to 7.56. $NO_3{^-}$ and $PO{_4}^{3-}$ concentrations ranged 0.4 ~ 4.9ppm and 0.02 ~ 0.99ppm, respectively. A point source of $NO_3{^-}$ was Seoul National University but concentration was not high and dropped to normal range at 400m downstream. $NO_3{^-}/PO{_4}^{3-}$ ratio ranged 28 to 152 except site 4 (0.4) where was affected by $PO{_4}^{3-}$ point source. Water pH, $NO_3{^-}$ and $PO{_4}^{3-}$ concentrations increased with downstream and were related to the input of irrigation water from Han-river between site 5 and 6. Bacillariophyceae alge dominated this stream. Phytoplankton density increased abruptly at downstream of site 5. In general, phytoplankton density did not increase until the $NO_3{^-}$ concentration of 3.5ppm and $PO{_4}^{3-}$ concentration of 0.07ppm. Phytoplankton density was low at sites where $NO_3{^-}/PO{_4}^{3-}$ ratio was larger than 50.

하천은 다양한 환경을 가지며 수생생물의 주 서식처로서의 역할을 한다. 식물성 플랑크톤의 분포는 pH, 질소, 인과 같은 수환경에 의해 영향을 받는다. 식물성 플랑크톤의 분포와 수환경간의 관계를 밝히기 위하여, 서울의 도림천 상류 10곳에서 pH, $NO_3{^-}$$PO{_4}^{3-}$의 농도 그리고 식물성 플랑크톤을 조사하였다. pH는 5.05 ~ 7.56의 범위에 있었으며, $NO_3{^-}$$PO{_4}^{3-}$의 농도는 0.4 ~ 4.9ppm와 0.02 ~ 0.99ppm의 범위에 있었다. 서울대학교로부터 $PO{_4}^{3-}$이 유입되는 것으로 확인되었지만 그 농도는 그리 높지 않았으며, 400m 정도 지나면 거의 모두 정화되었다. $NO_3{^-}/PO{_4}^{3-}$ 비율은 유입되는 $PO{_4}^{3-}$의 영향을 받는 곳을 제외하면 28 ~ 152의 범위로 나타났다. pH, $NO_3{^-}$, $PO{_4}^{3-}$의 농도는 하류로 갈수록 증가하였으며, 이는 한강 본류에서 끌어온 물의 유입뿐만 아니라 비점 오염원으로부터의 유입과 관련되었다. 일반적으로 $NO_3{^-}$의 농도가 3.5ppm 보다 높아지면 식물성 플랑크톤의 밀도가 급격히 증가하였으며, $PO{_4}^{3-}$의 경우는 농도가 0.07ppm 이상이 되어야 증가하는 것으로 나타났다. $NO_3{^-}/PO{_4}^{3-}$ 비율이 50 이상일 때 식물성 플랑크톤의 밀도는 낮게 나타났다.

Keywords

References

  1. 강수학. 2007. 도시하천의 생태적 관리를 위한 생태계 평가: 청계천을 사례로. 박사학위논문,상명대학교.
  2. 김동욱, 박재철, 류재근. 2006. 구두발표: 상수원수질관리(2); 한강 팔당댐-잠실 구간 상수원수의 주요 수질오염물질의 특성에 관한 연구.2006 한국물환경학회, 대한상하수도학회 공동 춘계학술발표회논문집. pp 48-60.
  3. 김상태, 김승현, 정종배, 정병룡, 이영득. 2002.탈질반응시 하천수의 생분해 특성상수 및 질소산화물에 대한 전자의 친화도상수 결정. 대한환경공학회지 24(3): 379-388.
  4. 김요용, 이시진. 2011. 다변량 통계 분석기법을이용한 한강수계 지천의 수질 평가. 대한환경공학회지 33(7): 501-510.
  5. 김운회. 2004. 칼슘 이온 및 굴껍질에 의한 인산이온의 제거 모델에 관한 연구. 석사학위논문,연세대학교.
  6. 김은경. 2007. 가창댐 수질 변화와 조류발생 분포분석. 석사학위논문, 경북대학교.
  7. 김재근, 박정호, 최병진, 심재한, 권기진, 이보아, 이양우, 주은정. 2006. 생태조사방법론. 보문당.
  8. 김정기. 2006. 건설현장에서 발생하는 콘크리트폐수의 처리 방안. 석사학위논문, 강원대학교.
  9. 김종원, 류승원, 이진국, 박정원, 이율경, 심재원, 강영훈, 김수경, 주기재, 김구연, 도윤호, 이찬우, 윤주덕. 2009. 하천생태학 그리고 낙동강. 계명대학교 출판부.
  10. 류재근, 이재성, 이강평, 김영준. 2002. 미생물을 활용한 수질관리. 신광출판사.
  11. 손동운. 2008. 산동면 인근지역 소하천의 수질특성에 관한 연구. 석사학위논문, 경운대학교.
  12. 송창수, 김민환. 2000. 황룡강의 수질 분석. 호남대학교 산업기술연구논문집 8: 35-41.
  13. 이승종, 김영오, 이상호, 이길성. 2005. 도림천 유역을 위한 침투증진시설의 효과분석. 한국수자원학회 2005년도 학술발표회 논문집. p 101.
  14. 이어진. 2011. 통계분석을 통한 담수 식물플랑크톤의 생태조사. 석사학위논문, 목포해양대학교.
  15. 심재형. 1994. 한국동식물도감 제 34권 해양식물플랑크톤. 교육부.
  16. 유광일. 1995. 한국동식물도감 제35권 해양동물플랑크톤. 교육부.
  17. 이혁진. 2009. 부산지역 자연형 복원하천에서의 수환경 분석을 통한 환경체험활동 적용. 석사학위논문, 한국교원대학교 교육대학원 .
  18. 정영호. 1968. 한국동식물도감 제9권 식물편(담수조류). 문교부.
  19. 전용원. 1997. 지구자원과 환경. 서울대학교 출판부
  20. 조경제, 신재기. 1998. 낙동강 하류에서 동.하계무기 N, P 영양염류와 식물플랑크톤의 동태.한국하천호수학회지 31(1): 67-68.
  21. 최철만, 김진호, 김원일, 이종식, 정구복, 이정택,문성기. 2007. 낙동강 하류의 식물플랑크톤상과 군집구조. 한국환경농학회지 26(2): 159.
  22. 환경부. 2002. 하천복원 가이드라인.
  23. Berner EK, Berner RA. 1987. Global water cycle: Geochemistry and Environment. Prentice-Hall, Inc., Englewood Cliffs New Jersey.
  24. Boynton WR, Kemp WM, Keefe CW. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: Kennedy V (ed.) Estuarine Comparisons. Academic Press, New York. pp 67-90.
  25. Cobb ED, Biesecker JE. 1971. The National Hydrologic Bench-Mark Network. Conservation Networks Geological Survey Circular 460- D.
  26. Coffin RB, Sharp JH. 1987. Microbial trophodynamics in the Delaware Esturay. Marine Ecology Progress Series, Oldendorf 41(3): 253-266.
  27. Cosby BJ, Wright RF, Hornberger GM, Galloway JN. 1985. Modeling the effects of acid deposition: estimation of longterm water quality responses in a small forested catchment. Water Resources Research 21(11): 1591-1601. https://doi.org/10.1029/WR021i011p01591
  28. Dayley WM. 1982. Algal biology: a Physiological Approach. Blackwell Scientific Publications
  29. Driscoll CT, Likens GE, Hedin KO, Eaton JS, Bormann FH. 1989. Changes in the chemistry of surface waters: 25-year results at the Hubbard Brook Experimental Forest. New Hampshire Environmental Science and Technology 23(2): 137-142. https://doi.org/10.1021/es00179a001
  30. Green WJ, Canfield DE. 1984. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochimica et Cosmochimica Acta 48(12): 2437-2467.
  31. Harper D. 1992. Eutrophication of Freshwaters: Principles, Problems and Restoration. Chapman and Hall, New York, NY(USA).
  32. Kemp WM, Boynton WR. 1981. External and internal factors regulating metabolic rates of an estuarine benthic community. Oecologia 51(1): 19-27. https://doi.org/10.1007/BF00344646
  33. Kong DS. 1999. Growth rate and nutrient removal potential of filamentous periphyton in artificial water channels. Korean Journal of Limnology 32(3): 207-215.
  34. Leonardson L, Ripl W. 1980. Control of undesirable algae and induction of algal successions in hypertrophic lake ecosystems. Developments in Hydrobiology 2: 57-65.
  35. Livingstone DA. 1963. Chemical Composition of Rrivers and Lakes. Data of Geochemistry Geological Survey Professional Paper 440-G.
  36. Meybeck M. 1979. Major elements contents of river waters and dissoloved inputs to the oceans. Review in Geological Dynamics and Geographical Physics 21(3): 215-246.
  37. Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS. 1989. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta 53(5): 997-1009. https://doi.org/10.1016/0016-7037(89)90205-6
  38. Sin YS, Kim JM. 2003. Relative importance of bottom-up vs. top-down controls on sizestructured phytoplankton dynamics in a freshwater ecosystem: 1. temporal and spatial variations of size structure. Korean Journal of Limnology 36(4): 403-412.
  39. Sin YS, Wetzel RL, Anderson IC. 1999. Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: analyses of long-term data. Estuaries and Coasts 22(2A): 260-275. https://doi.org/10.2307/1352982
  40. Stallard RF, Edmond JM. 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment of the dissolved load. Journal of Geophysical Research 88(C14): 9671-9688 https://doi.org/10.1029/JC088iC14p09671
  41. Stallard RF, Edmond JM. 1987. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research 92(C8): 8293-8302 https://doi.org/10.1029/JC092iC08p08293
  42. Sundbaeck K, Joensseon B, Nilsson P, Lindstroem I. 1990. Impact of accumulating drifting macroalgae on a shallow-water sediment system. An Experimental Study 58(3): 261-274.
  43. Welch EB, Lindell T. 1992. Ecological effects of wastewater: applied limnology and pollutant effects. Chapman and Hall Press, London.
  44. Zhang J, Huang WW, Letolle R, Jusserand C. 1995. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. Journal of Hydrology 168(1): 173-203. https://doi.org/10.1016/0022-1694(94)02635-O