DOI QR코드

DOI QR Code

Effect of Elevated $CO_2$ Concentration and Temperature on the Ecological Responses of Aster altaicus var. uchiyamae, Endangered Hydrophyte

$CO_2$농도와 온도 상승이 멸종위기식물 단양쑥부쟁이의 종생태적 반응에 미치는 영향

  • Received : 2012.03.26
  • Accepted : 2012.04.02
  • Published : 2012.05.31

Abstract

Aster altaicus var. uchiyamae, endangered plants to grade II designated by the Ministry of Environment Korea, is only distributed in Gyeongsangbukdo, Chungcheongnamdo in Korea. In order to know the effects of elevated $CO_2$ concentration and temperature on ecological responses of A. altaicus var. uchiyamae, this study was carried out in the control(ambient $CO_2$ + ambient temperature) and treatment(elevated $CO_2$ + elevated temperature) at glasshouse. As a result, germination rate of A. altaicus var. uchiyamae was higher in control than in treatment. Period of alive leaf was longer in control than in treatment. Period of blooming and seed maturity was faster in control than in treatment. Shoot and root weight were heavier in control than in treatment. No. of inflorescence per plant and seed per inflorescence was higher in control than in treatment. Weight of inflorescence per plant, seed per inflorescence and one seed was heavier in control than in treatment. These results indicate that ecological responses of A. altaicus var. uchiyamae may be more negatively affected by elevated $CO_2$ and temperature except for phenological responses of that may be delayed under future global warming situation.

단양쑥부쟁이(Aster altaicus var. uchiyamae)는 한국특산식물이자 환경부 지정 멸종위기식물 II급으로 하천변에 서식하는 식물이다. 본 연구는 지구온난화가 단양쑥부쟁이의 생태적 반응에 미치는 영향을 알아보기 위해 $CO_2$농도와 온도가 상승된 처리구와 대조구에서 종자를 파종하고, 유식물을 키워 발아율, 식물계절학, 영양생장과 생식생장을 관찰하였다. 그 결과, 단양쑥부쟁이의 발아율은 대조구보다 처리구에서 더 낮았다. 처리구에서 살아있는 잎의 지속 시기는 대조구보다 더 길었다. 개화와 꽃의 지속 시기, 종자 성숙 시기는 처리구에서 더 느렸다. 지상부와 지하부 무게는 처리구에서 더 가벼웠다. 개체 당 꽃대 수와 꽃대 당 종자개수는 처리구에서 더 적었다. 개체 당 꽃대무게, 꽃대 당 종자무게 그리고 종자 한 개 무게는 처리구에서 더 가벼웠다. 이상으로 볼때, $CO_2$농도와 온도상승은 단양쑥부쟁이의 생태에 부정적인 영향을 준다.

Keywords

References

  1. 기상청. 2009. 이상기후 감시 Update. 기상청 간행물. 235: 4.
  2. 김해란, 유영한. 2010. $CO_{2}$농도와 온도증가에 따른 한국 특산식물 섬자리공과 귀화식물 미국자리공의 발아, 식물계절 및 잎의 형태학적 반응 연구. 한국환경생태학회지. 24(1): 62-68.
  3. 김해란. 2010. 지구온난화에 따른 희귀식물 섬자리공과 귀화식물 미국자리공의 생태학적 반응.공주대학교 대학원 석사학위논문. pp. 1-69.
  4. 노형진, 정한열. 2002. STATISTICA에 의한 알기 쉬운 통계분석. 형석출판사. p. 336.
  5. 박정식, 윤영선. 2008. 현대통계학 제 4판. 다산출판사. p. 526.
  6. 신동훈. 2012. $CO_{2}$농도 및 온도 증가가 한국특산식물 섬자리공의 식물계절학 및 번식생태학적 특성 변화에 미치는 영향. 한국습지학회. 14(1):1-9.
  7. 신정훈. 2012. 제주고사리삼(고사리삼과) 서식지의 환경 특성, 개체군 동태와 환경처리에 따른 지상부와 지하부의 생태학적 반응. 공주대학교대학원 석사학위 논문. pp. 1-10.
  8. 윤중서. 2001. 온도에 따른 녹화용 식물의 발아율. 단국대학교 대학원 석사학위 논문. pp. 12-20.
  9. 이경미. 2011. 한반도 식물계절과 기후에 관한 연구. 건국대학교 대학원 박사학위논문. p. 140.
  10. 이경미, 권원태, 이승호. 2009. 우리나라 식물계절의 분포와 변화경향. 대한지리학회 연례학술대회발표논문요약집. (5): 195-197.
  11. 이영노. 2006. 새로운 한국식물도감. 교학사. p.293.
  12. 장순근, 정호성, 윤호일. 1998. 지구온난화와 서남극 남쉐틀렌드군도 킹조지섬의 최근 빙벽후퇴. 韓國地球科學會誌(Journal of the Korean Earth Science Society). 19(1): 101-106.
  13. 정중규. 2012. 환경처리조건에 따른 멸종위기식물 섬시호(산형과)의 생태적 반응에 관한 연구.공주대학교 대학원 석사학위 논문. pp. 1-21.
  14. 홍병희, 최봉호, 강광희, 김진기, 김석현, 민태기.2006. 신고종자학. 향문사. pp. 1-115.
  15. 홍용식. 2012. $CO_{2}$농도와 온도증가가 멸종위기 수생식물 독미나리(Cicuta virosa)의 식물계절, 생육반응과 번식생태에 미치는 영향. 공주대학교 대학원 석사학위논문. pp. 1-20.
  16. 환경부. 2009. 환경백서. 환경부. p. 65.
  17. Campbell W.J, Jr. Allen L.H. and Bowes G. 1988. Effects of $CO_{2}$ concentration on rubisco activity, amount and photosynthesisin soybean leaves. Plant Physiology. 88: 1310-1316. https://doi.org/10.1104/pp.88.4.1310
  18. Carter D.R, Peterson K.M. 1983. Effects of a $CO_2$-enriched atmosphere on the growth and competitive interaction of a $C_3$ and a $C_4$ grass. Oecologia. 58: 188-193. https://doi.org/10.1007/BF00399215
  19. Edwards G.R, Clark H, Newton P.C.D. 2001. The effects of elevated $CO_2$ on seed production and seedling recruitment in a sheep-grazed pasture. Oecologia. 127: 383-394. https://doi.org/10.1007/s004420000602
  20. Enoch, H.Z, Honour S.J. 1993. Significance of increasing ambient $CO_2$ for plant growth and survival, and interactions with air pollution. NATO ASI Series. 16: 51-75.
  21. Fajer E.D, Bowers M.D, Bazzaz F.A. 1991. Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevates $CO_2$. Oecologia. 87: 37-42. https://doi.org/10.1007/BF00323777
  22. Farrar J.F, and Williams M.L. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell and Environment. 14: 819-830. https://doi.org/10.1111/j.1365-3040.1991.tb01445.x
  23. Fenner M. 1992. Environmental influences on seed size and composition. In Horticultural Reviews 13(eds. J. Janick). John wiley & Sons, Inc., Canada. pp. 183-214.
  24. Florides G.A. and Christodoulides P. 2009. Global warming and carbon dioxide through sciences. Environment International. 35: 390-401. https://doi.org/10.1016/j.envint.2008.07.007
  25. Garbutt K and Bazzaz F.A. 1984. The effects of elevated $CO_2$ on plants. III. Flower, fruit and seed production and abortion. New Phytologist. 98: 433-446. https://doi.org/10.1111/j.1469-8137.1984.tb04136.x
  26. He J.S, Kelly S, Wolfe-Bellin and Bazzaz. 2005. Leaf-level physiology, biomass and reproduction of Phytolacca americana under conditions of elevated $CO_2$ and altered temperature regimes. Int, J. Plant Sci. 166(4): 615-622. https://doi.org/10.1086/430196
  27. Hocking P.J. and Meyer C.P. 1991. Effects of $CO_2$ enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Aust. J. Plant Physiol. 18: 339-356. https://doi.org/10.1071/PP9910339
  28. Idso S.B, Kimball B.A, Anderson M.G. and Mauneyv J.R. 1987. Effect of Atmospheric $CO_2$ Enrichment on Plant Growth: the Interaction role of Air Temperature. Agriculture, Ecosystems and Environment. 20: 1-10. https://doi.org/10.1016/0167-8809(87)90023-5
  29. IPCC. 2007. Climate change 2007: Mitigation of climate change. Contribution working group III contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge, New york, USA. p. 815.
  30. Kim S.Y. and Kang H.J. 2003. Effects of elevated atmospheric $CO_2$ on wetland plants: a review. Korean J. Limnol. 35(4): 391-402.
  31. Kim H.R. and You Y.H. 2010. Effects of elevated $CO_2$ concentration and increased temperature on leaf relates-physiological responses of Phytolacca insularis (native species) and Phytolacca americana (invasive species). The Ecological Society of Korea. 33(3): 195-204.
  32. Kim H.R. and You Y.H. 2010. The Effects of the Elevated $CO_2$ Concentration and Increased Temperature on Growth, Yield and Physiological Responses of Rice (Oryza sativa L. cv. Junam). Advances in Bioresearch. 1(2): 1-5.
  33. Klepper B. 1991. Root-shoot relationships. In Plant root: The hidden half(eds Waisel et al.). Marcel Dekker, New York. pp. 265- 286.
  34. Kobayashi N. 2006. Global warming and Forest business. Bomundang. pp. 21-27.
  35. Korea Meterological Administration. 2010. Report of Global Atmosphere Watch 2010. Seoul, Korea. p. 239(in Korean).
  36. Leishman M.R, Sanbrooke K.J, Woodfin R.M. 1999. The effects of elevated $CO_2$ and light environment on growth and reproductive performance of four annual species. New phytol. 144: 455-462. https://doi.org/10.1046/j.1469-8137.1999.00544.x
  37. Lobell D.B. and Asner G.P. 2003. Climate and management contributions to recent trends in US agricultural yields. Science. 299: 1032. https://doi.org/10.1126/science.1077838
  38. Morse S.R, Bazzaz F.A. 1994. Elevated $CO_2$and Temperature Alter Recruitment and Size Hierarchies in $C_3$ and $C_4$ Annuals. Ecology. 75(4): 966-975. https://doi.org/10.2307/1939420
  39. Patterson D.T. and Flint E.P. 1980. Potential effects of global atmospheric $CO_2$ enrichment on the growth and competitiveness of $C_3$and $C_4$ weed and crop plants. Weed Science. 28: 71-75.
  40. Purohit A.N, Treounna E.B. 1974. Effects of carbon dioxide on Pharbitis. Xanthium, and Silene in short days. Can. J. Bot. 52: 1283-1291. https://doi.org/10.1139/b74-166
  41. Reekie E.G, Bazzaz F.A. 1991. Phenology and growth in four annual species grown in ambient and elevated $CO_2$. Can. J. Bot. 69: 2475-2481. https://doi.org/10.1139/b91-307
  42. Rogers H.H, Runion G.B. and Krupa S.V. 1994. Plant responses to atmospheric $CO_2$enrichment with emphasis on roots and the rhizosphere. Environmental Pollution. 83: 155-189. https://doi.org/10.1016/0269-7491(94)90034-5
  43. Thomas C.D, Cameron A, Green R.E, Bakkenes M, Beaumont L.J, Collingham Y.C, Erasmus B.F.N, Siqueira M.F, Grainger A, Hannah L, Hyghes L, Huntley B, Jaarsveld A.S, Midhley G.F, Miles L, Ortega-Huerta M.A, Petercon A.T, Phillips O.L. and Willians S.E. 2004. Extinction risk from climate change. Nature. 427: 145-148. https://doi.org/10.1038/nature02121
  44. Thüfig B, Korner C, Stocklin J. 2003. Seed production and seed quality in a calcareous grassland in elevated $CO_2$. Global Change Biology. 9: 873-884. https://doi.org/10.1046/j.1365-2486.2003.00581.x
  45. Way D.A, Ladeau S.L, Mccarthy H.R, Clark J.S, Oren R, Finzi A.C, Jackson R.B. 2009.Greater seed production in elevated $CO_2$is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biology. pp. 1-10.
  46. Wulff R.D, Alexander H.M. 1985. Intraspecific variation in the response to $CO_2$enrichment in seeds and seedlings of Plantago lanceolata L. Oecologia. 66: 458- 460. https://doi.org/10.1007/BF00378315
  47. Ziska L.H, Bunce J.A. 1993. The influence of elevated $CO_2$ and temperature on seed germination and emergence from soil. Field Crops Research. 34(2): 147-157. https://doi.org/10.1016/0378-4290(93)90003-6
  48. Ziska L.H, Faulkner S, Lydon J. 2004. Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated $CO_2$: implications for control with glyphosate. Weed Science. 52: 584-588. https://doi.org/10.1614/WS-03-161R