Comparative Study on Biological Activities and Ingredient Contents of Different Solvent Extracts of Samchulkunbi-tang

삼출건비탕의 추출용매에 따른 성분 함량 및 효능 비교 연구

  • Jin, Seong Eun (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Seo, Chang-Seob (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Ha, Hyekyung (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Lim, Hye-Sun (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Yeji (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Jeon, Woo-Young (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Yoo, Sae-Rom (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Jung-Hoon (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Shin, In-Sik (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Seong-Sil (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Shin, Na Ra (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Lee, Mee-Young (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Jeong, Soo-Jin (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Ohn Soon (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Shin, Hyeun-Kyoo (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine)
  • 진성은 (한국한의학연구원 한약기초연구그룹) ;
  • 서창섭 (한국한의학연구원 한약기초연구그룹) ;
  • 하혜경 (한국한의학연구원 한약기초연구그룹) ;
  • 임혜선 (한국한의학연구원 한약기초연구그룹) ;
  • 김예지 (한국한의학연구원 한약기초연구그룹) ;
  • 전우영 (한국한의학연구원 한약기초연구그룹) ;
  • 유새롬 (한국한의학연구원 한약기초연구그룹) ;
  • 김정훈 (한국한의학연구원 한약기초연구그룹) ;
  • 신인식 (한국한의학연구원 한약기초연구그룹) ;
  • 김성실 (한국한의학연구원 한약기초연구그룹) ;
  • 신나라 (한국한의학연구원 한약기초연구그룹) ;
  • 이미영 (한국한의학연구원 한약기초연구그룹) ;
  • 정수진 (한국한의학연구원 한약기초연구그룹) ;
  • 김온순 (한국한의학연구원 한약기초연구그룹) ;
  • 신현규 (한국한의학연구원 한약기초연구그룹)
  • Received : 2012.09.24
  • Accepted : 2012.11.19
  • Published : 2012.12.31

Abstract

In order to investigate anti-inflammatory, anti-allergic and anti-obesity activities of Samchulkunbi-tang (SCT; Shen zhu jian pi-tang) water and 70% ethanol (EtOH) extracts, in vitro inhibitory activities against nitric oxide (NO), prostaglandin $E_2$ $PGE_2$), interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ production in lipopolysaccharide-stimulated RAW 264.7 cells, and macrophage-derived chemokine (MDC/CCL22) and regulated on activation of normal T-cell-expressed and -secreted (RANTES/CCL5) production in TNF-${\alpha}$/interferon-${\gamma}$-stimulated HaCaT and BEAS-2B cells as well as glycerol-3-phosphate dehydrogenase (GPDH) activity and leptin production in 3T3-L1 cells were determined. A HPLC was used for quantification of the seven marker components (albiflorin, paeoniflorin, liquiritin, naringin, hesperidin, poncirin and glycyrrhizin) of SCT water and 70% EtOH extracts. SCT showed inhibitory effects against MDC and RANTES production in HaCaT cells, as well as RANTES production in BEAS-2B cells. In addition, SCT reduced not only NO, $PGE_2$, IL-6 and TNF-${\alpha}$ production in RAW 264.7 cells, but also GPDH activity and leptin production in 3T3-L1 cells. Furthermore, the biological activities and the contents of six compounds (except paeoniflorin) were higher in 70% EtOH extract than water extract. These results suggest that SCT has anti-inflammatory, anti-allergic and anti-obesity activities. These efficacies of 70% EtOH extract are relatively higher than that of water extract.

Keywords

References

  1. Kim, S. W. and Lee, T. H. (1988) Effect of samchulkunbitang on the gastric secretion and intestinal transport in the rat. Korean J. Oriental Med. Pathol. 3: 84-90.
  2. Kim, T. J., Seo, E. Y., Jang, Y. S., Kim, S. H., Kim, D. H., Chu, V. M., Kim, D. H. and Kang, J. S. (2012) Influential characteristics of decoction waters on extraction of components in corydalis tuber analyzed by multiple factor analysis. Kor. J. Pharmacogn. 43: 16-21.
  3. Leem, K. H., Kim, H. C. and Ahn, D. K. (1996) A study for standardization of Zingiberis rhizome-A study on quantitative analysis of 6-gingerol in Zingiberis offcinale ROSCOE by HPLC and extracting rate with different eluants. Kor. J. Herbology 11: 85-91.
  4. Pang, T. S., Lee, K., Ham, I., Bu, Y., Kim H., Rhee J. S. and Choi H. Y. (2008) A study on the content changes of ${\beta}$-asarone and $\alpha$- asarone in Acorus gramineus according to its parts, extraction solvent, and fermentation. Kor. J. Herbology 23: 149-157.
  5. Seo, H. S. (2010) The comparative study of anti-inflammation and anti-oxidation in accordance with extraction solvents of Jeondo-san. J. Korean Orient. Med. Ophathal. Otolaryn. Dermatol. 23: 69-80.
  6. Lee, J. A., Ha, H. K., Jung, D. Y., Lee, H. Y., Lee, N. H., Lee, J. K., Huang, D. S. and Shin, H. K. (2010) Anti-inflammatory Effects of Sam-chul-kun-bi-tang. Korean J. Orient. Med. 31: 47-54.
  7. Kim, T. G., Ko, S. G. and Baik, T. H. (1997) An experimental study on the effect of Samchulgunbitang affecting gastrointestine and central nervers system. Korean J. Orient. Int. Med. 18: 1-14.
  8. Ishida, H., Takamatsu, M., Tsuji, K. and Kosuge, T. (1987) Studies on active substances in herbs used for Oketsu ("stagnant blood") in Chinese medicine. VI On the anticoagulative principles in Paeoniae Radix. Chem. Pharm. Bull. 35: 849-852 https://doi.org/10.1248/cpb.35.849
  9. Kimura, M., Kimura, I. and Nojima, H. (1985) Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn. J. Pharmacol. 37: 395-399. https://doi.org/10.1254/jjp.37.395
  10. Liang, J., Zhou, A., Chen, M. and Xu, S. (1990) Negatively regulatory effects of paeoniflorin on immune cells. Eur. J. Pharmacol. 183: 901-902. https://doi.org/10.1016/0014-2999(90)92731-W
  11. Hsu, F. L., Lai, C. W. and Cheng, J. T. (1997) Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora. Planta Med. 63: 323-325. https://doi.org/10.1055/s-2006-957692
  12. Wilmsen, P. K., Spada, D. S. and Salvador, M. (2005) Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 53: 4757-4761. https://doi.org/10.1021/jf0502000
  13. Galati, E. M., Monforte, M. T., Kirjavainen, S., Forestieri, A. M., Trovato, A. and Tripodo, M. M. (1994) Biological effects of hesperidin, a citrus flavonoid. (Note I): antiinflammatory and analgesic activity. Farmaco. 40: 709-712.
  14. Yeh, C. C., Kao, S. J., Lin, C. C., Wang, S. D., Liu, C. J. and Kao, S. T. (2007) The immunomodulation of endotoxininduced acute lung injury by hesperidin in vivo and in vitro. Life Sci. 80: 1821-1831. https://doi.org/10.1016/j.lfs.2007.01.052
  15. Kim, D. H., Bae, E. A. and Han, M. J. (1999) Anti-Helicobacter pylori activity of the metabolites of poncirin from Poncirus trifoliata by human intestinal bacteria. Biol. Pharm. Bull. 22: 422-424. https://doi.org/10.1248/bpb.22.422
  16. Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T. (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30: 2345-2351. https://doi.org/10.1248/bpb.30.2345
  17. Lee, C. H., Jeong, T. S., Choi, Y. K., Hyun, B. H., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I. and Bok, S. H. (2001) Antiatherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun. 284: 681-688. https://doi.org/10.1006/bbrc.2001.5001
  18. Schrofelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., Ernst, W. and Szolar, O. H. (2009) Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signaling. Biochem. J. 421: 473-482. https://doi.org/10.1042/BJ20082416
  19. Yoshikawa, M., Matsui, Y., Kawamoto, H., Umemoto, N., Oku, K., Koizumi, M., Yamao, J., Kuriyama, S., Nakano, H., Hozumi, N., Ishizaka, S. and Fukui, H. (1997) Effects of glycyrrhizin on immune-mediated cytotoxicity. J. Gastroenterol. Hepatol. 12: 243-248. https://doi.org/10.1111/j.1440-1746.1997.tb00416.x
  20. Wang, W., Hu, X., Zhao, Z., Liu, P., Hu, Y., Zhou, J., Zhou, D., Wang, Z., Guo, D. and Guo, H. (2008) Antidepressantlike effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis. Prog. Neuropsychopharmacol. Biol. Psychiatry 32: 1179-1184. https://doi.org/10.1016/j.pnpbp.2007.12.021
  21. Yang, Y., Bian, G. X. and Lu, Q. J. (2008) Neuroprotection and neurotrophism effects of liquiritin on primary cultured hippocampal cells. Zhongguo Zhong Yao Za Zhi 33: 931-935.
  22. Posadas, I., Terencio, M. C., Guillén, I., Ferrándiz, M. L., Coloma, J., Paya, M. and Alcaraz, M. J. (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 361: 98-106. https://doi.org/10.1007/s002109900150
  23. Yoshie, O., Imai, T. and Nomiyama, H. (2001) Chemokines in immunity. Adv. Immunol. 78: 57-110.
  24. Rha, Y. H. (2005) Role of chemokines in the pathogenesis of atopic. Pediatr. Allergy. Respir. Dis. 15: 238-241.
  25. Zhang, M., Zhu, L., Feng, Y., Yang, Y., Liu, L. and Ran, Y. (2008) Effects of acitretin on proliferative inhibition and RANTES production of HaCaT cells. Arch. Dermatol. Res. 300: 575-581. https://doi.org/10.1007/s00403-008-0872-z
  26. Yu, B., Koga, T., Urabe, K., Moroi, Y., Maeda, S., Yanagihara, Y. and Furue, M. (2002) Differential regulation of thymus- and activation-regulated chemokine induced by IL-4, IL-13, TNF-alpha and IFN-gamma in human keratinocyte and fibroblast. J. Dermatol. Sci. 30: 29-36. https://doi.org/10.1016/S0923-1811(02)00046-4
  27. Xiao, T., Kagami, S., Saeki, H., Sugaya, M., Kakinuma, T., Fujita, H., Yano, S., Mitsui, H., Torii, H., Komine, M., Asahina, A., Nakamura, K. and Tamaki, K. (2003) Both IL-4 and IL-13 inhibit the TNF-alpha and IFN-gamma enhanced MDC production in a human keratinocyte cell line, HaCaT cells. J. Dermatol. Sci. 31: 111-117. https://doi.org/10.1016/S0923-1811(02)00149-4
  28. Zhang, L., Redington, A. E. and Holgate, S. T. (1994) RANTES: A novel mediator of allergic inflammation? Clin. Exp. Allergy 24: 899-904. https://doi.org/10.1111/j.1365-2222.1994.tb02720.x
  29. La Cava, A. and Matarese, G. (2004) The weight of leptin in immunity. Nat. Rev. Immunol. 4: 371-379. https://doi.org/10.1038/nri1350
  30. Fantuzzi, G. (2005) Adipose tissue, adipokines, and inflammation. J. Allergy. Clin. Immunol. 115: 911-919. https://doi.org/10.1016/j.jaci.2005.02.023
  31. Isaia, G. C., D'Amelio, P., Di Bella, S. and Tamone, C. (2005) Is leptin the link between fat and bone mass? J. Endocrinol. Invest. 28: 61-65. https://doi.org/10.1007/BF03345531
  32. Trayhurn, P. and Wood, I. S. (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92: 347-355. https://doi.org/10.1079/BJN20041213