Involvement of Heme Oxygenase-1 Induction in the Neuroprotective Activitiy of Extract of Siegesbeckia Herba in Murine Hippocampal HT22 Cells

희렴 추출물의 Heme Oxygenase-1 발현을 통한 생쥐 해마 유래 HT22 세포 보호효과

  • 임남경 (계명대학교 신약개발연구소) ;
  • 이동성 (원광대학교 한방체액조절연구센터) ;
  • 여선정 (계명대학교 약학대학) ;
  • 김윤철 (원광대학교 약학대학) ;
  • 정길생 (계명대학교 신약개발연구소)
  • Received : 2012.12.10
  • Accepted : 2012.12.20
  • Published : 2012.12.31

Abstract

Siegesbeckia Herba is known to have anti-oxidant, anti-inflammatory, anti-allergic and anti-tumor. The objective of this study is to explore the neuroprotective effect of Siegesbeckia Herba against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Siegesbeckia Herba 70% ethanol extract and solvent fractions have the potent neroprotective effects on glutamate-induced nerotoxicity by induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells. Especially, ethyl acetate fraction showed higher protective effect. In HT22 cell, Siegesbeckia Herba ethyl acetate fraction makes the nuclear accumulation of Nrf2. Further, we found that treatment with c-JUN N-terminal kinase (JNK) inhibitor (SP600125) reduced Siegesbeckia Herba ethyl acetate fraction induced HO-1 expression and Siegesbeckia Herba ethyl acetate fraction also increased JNK phosphorylation. In conclusion, the ethyl acetate fraction of 70% ethanol extract of Siegesbeckia Herba significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and JNK pathway in mouse hippocampal HT22. Taken together these finding suggest that Siegesbeckia Herba ethyl acetate fraction good source for taking active compounds and may be a potential therapeutic for brain disorder by targeting the oxidative stress of neuronal cell.

Keywords

References

  1. 생약학교재편찬위원회 (2007) 생약학, 218-220. 동명사, 서울.
  2. 한국 약용식물학 연구회 (2001) 종합약용식물학, 219. 학창사, 서울.
  3. Baruan, R. N., Sharma, R. P., Madhusudanan, K. P., Thyagarajan, G., Herz, W. and Govindan, S. V. (1980) New melampolides and darutigenol from Siegesbeckia orientalis. Phytochemistry 19: 323-325. https://doi.org/10.1016/S0031-9422(00)81985-8
  4. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1991) Sesquiterpene lactones and other constituents from Siegesbeckia orientalis and Guizotia scabra. Phytochemistry 30: 1579-1584. https://doi.org/10.1016/0031-9422(91)84212-B
  5. Han, K. D., Kim, J. H. and Oh, S. J. (1975) Chemistry and pharmacology of diterpenoids of Siegesbeckia pubscens. Yakhak Hoeji 19: 129-165.
  6. Kim, J. Y., Lim, H. J. and Ryu, J. H. (2008) In vitro antiinflammatory activity of 3-O-methyl-flavones isolated from Siegesbeckia glabrescens. Bioorg. Med. Chem. Lett. 18: 1511-1514. https://doi.org/10.1016/j.bmcl.2007.12.052
  7. Sun, H. X. and Wang, H. (2006) Immunosuppressive Activity of the Ethanol Extract of Siegesbeckia orientalis on the Immune Responses to Ovalbumin in Mice. Chemi. Biodivers. 3: 754-761. https://doi.org/10.1002/cbdv.200690077
  8. Huh, J. E., Baek, Y. H., Lee, J. D., Choi, D. Y. and Park, D. S. (2008) Therapeutic effect of Siegesbeckia pubescens on cartilage protection in a rabbit collagenase-induced model of osteoarthritis Yakhak Hoeji 107: 317-328.
  9. Packer, L. (1994) In methods in enzymology: Oxygen radicals in biological systems. Part C, Academic press, San Diego. 233: 15-35.
  10. Kandaswami, C. and Middleton, E. (1994) Free radical scavenging and antioxidant activity of plant flavonoids. In free radicals in diagnostic medicine. Armstrong D, de. 351-376. Plenum press, New York and London.
  11. Satoh, T., Enokido, Y., Kubo, K., Yamada, M. and Hatanaka, H. (1999) Oxygen toxicity induces apoptosis in neuronalcells. Cell Mol. Neurobiol. 18: 649-666.
  12. Satoh, T., Okamoto, S., Cui, J.,Watanabe, Y., Furuta, K., Suzuki, M., Tohyama, K. and Lipton, S. A. (2006) Activationof the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc. Natl. Acad. Sci. U. S. A. 103: 768-773. https://doi.org/10.1073/pnas.0505723102
  13. Satoh, T. and Lipton, S. A. (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci. 30: 37-45. https://doi.org/10.1016/j.tins.2006.11.004
  14. Alibright, T. D., Jessel, T. M., Kandel, E. R. and Poster, M. I.(2000) Neural science: a century of progress and the mysteriesthat remain. Cell 18: 209-216.
  15. Siesjo, B. K. (1981) Cell damage in the brain: a speculativesynthesis. J. Cereb. Blood Flow Metab. 1: 155-185. https://doi.org/10.1038/jcbfm.1981.18
  16. Greenamyre, J. T., Penney, J. B., Young, A. B., D'Amato, C. J. and Hicks, S. P. (1985) Alterations in L-glutamate bindingin Alzheimer's and Huntington's disease. Science 4693: 1496-1499.
  17. Rossler, O. G., Bauer, I., Chung, H. Y. and Thiel, G. (2004) Glutamate-induced cell death of immortalized murine hippocampalneurons: neuroprotective activity of heme oxygenase- 1, heat shock protein 70, and sodium selenite. Neurosci. Lett. 362: 253-257. https://doi.org/10.1016/j.neulet.2004.03.033
  18. Jeong, G. S., Li, B., Lee, D. S., Choi, H. G. and Kim, Y. C. (2010) Neuroprotective effects of the extract of Zingiberis Rhizoma. Kor. J. Pharmacogn. 41: 190-195.
  19. Choi, H. G., Lee, D. S., Li, B., Jun, K. Y., Jeong, G. S. and Kim, Y. C. (2011) Neroprotective effect of the water-insoluble fraction of root barks of Dictamnus dasycarpus 70% ethanol extract on glutamate-induced oxidative damage in mouse hippocampal HT22 cells. Kor. J. Pharmacogn. 42: 175-181.
  20. Jeong, G. S., Li, B., Lee, D. S., Byun, E., Kang, D. K., Lee, H. S. and Kim, Y. C. (2007) Cytoprotective constituents of Alipinia katsumadai seeds against glutamate-induced oxidative injury in HT22 cells Nat. Prod. Sci. 13: 268-272.
  21. Tan, S., Schubert, D. and Maher, P. (2001) Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1: 497-506. https://doi.org/10.2174/1568026013394741
  22. Rossler, O. G., Bauer, I., Chung, H. Y. and Thiel, G. (2004) Glutamate-induced cell death of immortalized murine hippocampal neurons: neuroprotective activity of heme oxygenase- 1, heat shock protein 70, and sodium selenite. Neurosci. Lett. 362: 253-257. https://doi.org/10.1016/j.neulet.2004.03.033
  23. Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. (2003) Curcumin activates the heme oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371: 887-895. https://doi.org/10.1042/BJ20021619
  24. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifyse enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322. https://doi.org/10.1006/bbrc.1997.6943
  25. Choi, B. H., Hur, E. M., Lee, J. H., Jun, D. J. and Kim, K. T. (2005) Protein kinase C delta-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamateinduced neuronal cell death. J. Cell Sci. 119: 1329-1340.
  26. Oh, H. L., Seok, J. Y., Kwon, C. H., Kang, S. K. and Kim, Y. K. (2006) Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicology 27: 31-38. https://doi.org/10.1016/j.neuro.2005.05.008
  27. Elbirt, K. K., Whitmarsh, A. J., Davis, R. J. and Bonkovsky, H. L. (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen- activated protein kinases. J. Biol. Chem. 273: 8922-8931. https://doi.org/10.1074/jbc.273.15.8922
  28. Kietzmann, T., Samoylenko, A. and Immenschuh, S. (2003) Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes. J. Biol. Chem. 278: 17927-17936. https://doi.org/10.1074/jbc.M203929200