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different in the clinical studies between mouse and human. In 
fact, many drugs that have been proved to be effective in mouse 
models do not work well in the patients.2) Thus, development of 
new systems for realizing disease-specific phenotypes is needed 
to explore fundamental mechanisms of various human diseases. 
In this context, human embryonic stem cells (hESCs) first 
established by Thomson et al.3) and induced pluripotent stem cells 
(iPSCs) first developed by Takahashi and Yamanaka4) have been 
highlighted in the research of human diseases at the molecular 
and cellular levels as well as in the cell replacement therapy. Also, 
human ESCs and iPSCs can be employed to screen new drugs 
and to test drug toxicity in vitro. In this review, we are focusing 
on the concept of cellular reprogramming and in vitro disease 
modeling using iPSCs, especially for genetic diseases. Also, we 
briefly describe current breakthroughs and prospects of the iPSC 
research.
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The generation of induced pluripotent stem cells (iPSCs) derived from patients’ somatic cells provides a new paradigm for 
studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) 
provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This 
promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the 
molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening 
and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we  summarized the concept and history of 
cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs. 
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Introduction

So far, many approaches have been tried to figure out the 
pathogenesis of genetic diseases, and a large amount of 
knowledge in this field has been accumulated by tremendous 
studies via RNA interference (RNAi) techniques and genetic 
manipulated-mouse models, called knock out (K/O) models. These 
two systems have mimicked the disease phenotypes in vitro and 
in vivo to some extent. However, there are several limitations of 
these systems in the realization of human disease phenotypes; 
the cell-based system is hard to reproduce the various cell and/
or tissue types in vitro and K/O mouse models are occasionally 
unmatched with human disease phenotypes because of 
species-specific differences in the anatomic and physiologic 
characteristics between mouse and human being.1) By species-
specific differences, the effectiveness of the drugs could be also 
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Derivation of induced pluripotent stem cells (iPSCs)

Since human ESCs have been generated from human 
early developing embryos by Thomson and colleagues,3) new 
paradigm of disease modeling has been emerged. Genetic defects 
could be identified from early embryos by pre-implantation 
genetic diagnosis (PGD) and disease-specific human ESC lines 
could be generated by homologous recombination capable 
of manipulating target genes in normal hESCs.5, 6) However, 
generation of human ESCs entails strict restrictions, including 
ethical issues, immune rejection, a paucity of diseases enabling 
the PGD, and low efficiency of homologous recombination in 
human ESCs.7-10) To overcome these barriers, scientists have 
turned their interests into the cellular reprogramming. So 
far, several approaches have been tried to induce the cellular 
reprogramming; somatic cell nuclear transfer (SCNT), culture of 
somatic cells with nuclear extract of oocytes or ES cells, fusion of 
a somatic cell with an ES cell, and induction of the pluripotency 
from differentiated cells by ectopic expression of defined factors 
(Fig. 1).11) 

SCNT is considered to be a potent cellular reprogramming 
technique since the Dolly, a first cloned sheep, has been generated 
from a cloned embryo with a mammary gland cell.12) To make 
cloned embryos, somatic cells are individually introduced 
into enucleated oocytes and then develop to the blastocyst 
stage. Then, ES-like cells are derived from the cloned embryos. 
Cloned ESCs can solve the problem of immune rejection in the 
cell therapy because the genome of cloned ESCs is genetically 
matched with that of the patient. However, there are a few of 
limitations in the production of human cloned ESCs. To make 
human cloned embryos, a lot of human oocytes are required 

because of low efficiency of cloning, thereby raising serious 
ethical and social issues. Also, it is not easy to establish human ESC 
lines from cloned embryos. Stable human ESC lines generated by 
modified SCNT could normally express pluripotent marker genes 
and could differentiate into three germ layers, representing that 
they were pluiripotent in vitro and in vivo.13) Nonetheless, those 
cells showed immature form of DNA methylation and histone 
modifications, indicating that SCNT in human cells may result 
in incomplete epigenetic reprogramming. Another approach 
can be employed to produce pluripotent cells; somatic cells are 
cultured in the medium containing nuclear extracts of oocytes or 
ES cells.11) Hybrid ES-like cells can be generated by fusion of a ESC 
with a somatic cell using polyethylene glycol (PEG).14) This method 
is easy to generate pluripotent cells without raising ethical issues, 
but there are some limitations such as low efficiency of cell 
fusion and tetraploidy of fused cells. Most powerful technique 
is to derive pluripotent stem cells from differentiated cells by 
ectopic expression of defined factors. This was first developed 
in 2006 by Dr. Shinya Yamanaka, a Nobel laureate of this year. 
Briefly, iPSCs could be first generated from mouse fibroblasts by 
retroviral infection designed for ectopic expression of defined 
factors such as OCT4, SOX2, KLF4 and cMYC.4) One year later, 
human iPSCs could be derived from human dermal fibroblasts 
by the same method. Thereafter, iPSCs could be generated from 
various somatic cell types, including blood cells, melanocytes, 
keratinocytes and stomach cells, representing the universality of 
cellular reprogramming with this technique.15-18) However, in case 
of viral infection which is the most widely used method, random 
integration of foreign genes into the host genome may give rise to 
insertional mutagenesis. In addition, incomplete silencing or re- 
activation of transgenes, especially oncogenes such as c-MYC, 
may be potentially harmful in case of translational application 
due to the risk of tumorigenesis.19) To circumvent these potential 
risks, many approaches have been developed to generate the 
safe iPSCs using non-virus systems, including plasmids, proteins, 
synthetic mRNA and micro RNAs (Fig. 2).20-26) Furthermore, it has 
been reported that synthetic small molecules and epigenetic 
modification agents can partially replace defined factors and 
improve the efficiency of cellular  reprogramming.27-29)

Recently, the concept of cellular reprogramming is being 
expanded to a novel technology, called "Direct Conversion". By 
this approach, specialized cell types could be directly derived 
from somatic cells without induction of cellular reprogramming 
to the pluripotent state. As shown in Fig. 3, diverse cell types such 
as  neuronal stem cells, dopaminergic neurons, neuronal cells, 
cardiomyocytes and blood progenitors could be converted from Figure 1. Several trials for cellular reprogramming
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Fig. 1. Several trials for cellular reprogramming.
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somatic cells by using respective transcription factors which 
are specifically expressed in a specialized cell type.30-38) Direct 
conversion or transdifferentiation will open the new era of cellular 
reprogramming. 

Trends and products of the study in disease-
specific iPSC generation

In the past era, it was difficult to recapitulate and demonstrate 
various disease phenotypes in vitro system. Since iPSCs gene
ration as cellular reprogramming was reported successfully by 
Yamanaka and colleagues, the paradigm in vitro study for the 
genetic diseases was changed revolutionarily and scientists have 

Figure 2. Various approaches for iPSC generation
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Fig. 2. Various methods for iPSCs generation.

Figure 3. Direct conversion of somatic cells to specialized cell types
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Fig. 3. Direct conversion of somatic cells into specific lineage cells.

Table 1. Examples of Genetic Disease Modeling with Patient-specific iPSCs 
Disease Mutation gene Relevant cell types Disease phenocopy Drug test References

ALS SOD1 Neuron X X Robinton et al.39)

FXS FMR1 iPSCs X X Park et al.40)

LS PTPN11 Cardiomyocyte O O Dimos et al.41)

FA FANCA; FANCD Blood progenitor Gene correction X Carvajal-Vergara et al.43)

SMA SMN1; SMN2 Neuron O O Hanna et al.44)

LQT KCNH2 Cardiomyocyte O O Itzhaki et al.51)

TS CACNA1C Cardiomyocyte O O Raya et al.45)

SCH Polygenic Neuron O O Brennand et al.52)

ALD ABCD1 Oligodendrocyte O O Jang et al.53)

ALS, amyotrophic lateral sclerosis; FXS, fragile X syndrome; LS, LEOPARD syndrome; FA, Fanconi anemia; SMA, spinal muscular atrophy; LQTS, long QT 
syndrome; TS, Timothy syndrome; SCH, schizophrenia; ALD, adrenoleukodystrophy
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focused their efforts to the patient-specific iPSCs generation 
and its disease modeling (Table 1).39) A variety of human iPSC lines 
were first derived from 10 patients of degenerative and genetic 
diseases.40) Disease-specific iPSCs were generated from dermal 
fibroblast of ALS (amyotrophic lateral sclerosis) patients and  
then its specific disease phenotypes could be recapitulated in 
the differentiated motor neurons and oligodendrocytes.41) What 
abnormal expression patterns and epigenetic modification of 
FMR gene could occur during early developmental period was 
confirmed by studying iPSCs derived from fragile X syndrome 
patients.42) Using iPSCs lines derived from LEOPARD syndrome 
patients with PTPN11 gene mutation, it was newly suggested that 
disease phenotype of HCMP (hypertrophic cardiomyopathy) was 
caused by dysregulation of MAPK pathway and the accumulation 
of NFTA4 transcription factors in the nucleus of disease-cardio
myocytes.43) 

In addition to the disease modeling via patient-specific iPSCs, 
many scientists reported the fascinating results in the genetic 
correction model and cell therapy in disease-iPSCs. Hanna et 
al. first demonstrated the possibility of cell therapy with iPSCs 
in mouse model.44) iPSCs derived from mouse with sickle cell 
anemia were corrected by using recombination techniques 
and differentiated into hematopoietic progenitor cells. When 
disease-corrected hematopoietic progenitors were transplanted 
into the mouse with sickle cell anemia, the disease phenotypes 
of sickle cell anemia were rescued by the gene-corrected cells. 
Correction of human Fanconi anemia-derived iPSCs represented 
functionally normal phenotypes in blood progenitor cells.45)

Patient-specific iPSCs could be used to screen new drugs in 
the pharmaceutical industry. The phenotypes of type I spinal 
muscular atrophy (SMA) were reproduced in the disease-
specific neurons differentiated from SMA patients-specific 
iPSCs.46) Then, abnormal phenotypes could be rescued by over-
expression of SMN protein in diseased neurons because it was 
found that reduction of the SMN protein levels resulted in the 
decrease of motor neuron production and neurite outgrowth. 
Cardiomyocytes derived from Timothy syndrome-specific iPSCs 
recapitulated its disease phenotypes including irregular beating, 
Ca2+ over-influx and persistent activated action potential (AP).47) 
When CDK inhibitor (roscovitine) to recover abnormal L-type 
calcium channel (Cav1.2 channel) was treated, abnormal AP and 
arrhythmia were rescued in the disease-specific cardiomyocytes. 
These studies demonstrate that human disease-specific iPSCs 
can complement the paucity of mouse models which are different 
from human physiologic and pathologic characteristics.

The prospect and application of the disease-
specific iPSCs 

Among several cellular reprogramming techniques, iPSC gene
ration is free of ethical issues and technically easy. In the early 
era of the iPSC study, scientists have tried to generate disease-
specific iPSCs from patient's somatic cells. Thereafter, the disease 
modeling that recapitulated the diseased phenotypes in iPSC-
derived specialized cell types has been highlighted because the 
pathogenesis of many genetic diseases could be figured out at 
the molecular and cellular levels. In addition, iPSCs have a distinct 
advantage to study the unknown pathogenesis during early 
human development in many genetic disorders. Now, many 
researchers have conducted drug screening and in vitro pre-
clinical study in the disease-specific iPSCs.48) Also, the cell therapy 
with disease-corrected iPSCs may be considered as ‘patient-
specific treatment’.49) Thus, iPSCs have many advantages to 
study the diseased phenotypes or the pathogenesis in human 
during early development. Although disease-specific iPSCs have 
become a new system to study various genetic diseases, there are 
still many barriers to be overcome. To investigate various diseases, 
more efficient techniques of iPSCs generation and robust 
protocol for differentiation into a specialized cell type should be 
improved (48). In addition, difficulties to recruit various patients 
of rare genetic diseases and to perform disease modeling for late 
onset and multi-factorial diseases are to be solved.50) Collectively, 
there is no doubt that disease-specific iPSCs are very useful as 
attractive materials to study the pathogenesis of genetic diseases 
at the molecular and cellular levels and to screen new drugs.  
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