DOI QR코드

DOI QR Code

Observation and Evaluation of Zooplankton Community Characteristics in the Petite Ponds (Dumbeong) for Irrigation: A Case Study in Goseong Region of South Korea

남부지역 소형 관개용 못들에서의(둠벙) 동물플랑크톤 군집특성 조사 및 평가

  • Kim, Hang-Ah (Department of Biological Sciences, Pusan National University) ;
  • Choi, Jong-Yoon (Department of Biological Sciences, Pusan National University) ;
  • Kim, Seong-Gi (Department of Biological Sciences, Pusan National University) ;
  • Do, Yuno (Department of Biological Sciences, Pusan National University) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University) ;
  • Kim, Dong-Kyun (Department of Physical & Environmental Sciences, University of Toronto) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
  • 김항아 (부산대학교 자연과학대학 생명과학과) ;
  • 최종윤 (부산대학교 자연과학대학 생명과학과) ;
  • 김성기 (부산대학교 자연과학대학 생명과학과) ;
  • 도윤호 (부산대학교 자연과학대학 생명과학과) ;
  • 주기재 (부산대학교 자연과학대학 생명과학과) ;
  • 김동균 (토론토대학교 물리환경과학과) ;
  • 김현우 (순천대학교 사범대학 환경교육과)
  • Received : 2012.11.19
  • Accepted : 2012.12.18
  • Published : 2012.12.31

Abstract

This study demonstrates the investigation of zooplankton communities (e.g. rotifers, cladocerans and copepods) and environmentally related driving factors (e.g. elevation, area size, water depth, types of dike construction, and bottom substrates). We hypothesized that zooplankton community structure and composition would be influenced by ambient driving forces in different scales of the irrigation ponds (Dumbeong). A total of 66 zooplankton species/groups (56 rotifers, 9 cladocerans, 1 copepods) were found and identified at 45 Dumbeong of Goseong region (i.e. Goseong-gun) in 2011. The rotifers occupied 84.9% of the total zooplankton abundance. We could categorize a clear separation of zooplankton communities into 4 different patterns based on cluster analysis. Zooplankton diversities in Dumbeongs were lower than those in natural ponds or wetlands. In addition, community structure of zooplankton was also simpler and had a broken stick distribution based on SHE analysis. Species composition in each Dumbeong was not significantly discriminated each other. The result of canonical correspondence analysis (CCA) pinpointed that significant influential variables upon zooplankton community were dissolved oxygen percent saturation, pH, and Dumbeong's material. This study indicated that morphological type of the Dumbeong and its water quality could determine the community structure of zooplankton. Furthermore, the connectivity between ambient habitats and materials could be necessary to be rigorously considered in respect to producing the Dumbeongs to subsidize alternative habitats for wetland ecosystem in freshwater landscape.

Keywords

References

  1. Beklioglu, M. and B. Moss. 1995. The impact of pH on interactions among phytoplankton algae, zooplankton and perch (Perca fluviatilis) in a shallow, fertile lake. Freshwater Biology 33: 497-509. https://doi.org/10.1111/j.1365-2427.1995.tb00409.x
  2. Bogdan, K.G. and J.J. Gilbert. 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia 72: 331-340. https://doi.org/10.1007/BF00377560
  3. Burks, R.L., D.M. Lodge, E. Jeppesen and T.L. Lauridesen. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x
  4. Collinson, N.H., J. Biggs, A. Corfield, M.J. Hodson, D. Walker, M. Whitfield and P.J. Williams. 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125-133. https://doi.org/10.1016/0006-3207(95)00021-U
  5. Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray and S. Maund. 2008. Comparative biodiversity biodiversity of aquatic habitats in the European agricultural landscape. Agriculture Ecosystems and Environment 125: 1-8. https://doi.org/10.1016/j.agee.2007.10.006
  6. Desmarais, K.H. and A.J. Tessier. 1999. Performance tradeoff across a natural resource gradient. Oecologia 120: 137-146. https://doi.org/10.1007/s004420050842
  7. Duelli, P. 1997. Biodiversity evaluation in agricultural landscapes: an approach at tow different scales. Agriculture, Ecosystems and Environment 62: 81-91. https://doi.org/10.1016/S0167-8809(96)01143-7
  8. Fernendez, A.I., O. Viedma, S. Sanchez-Carrillo, M. Alvarez-Cobelas and D.G. Angeler. 2009. Local and landscape effects on temporary pond zooplankton egg banks: conservation implications. Biodiversity and Conservation 18: 2373-2386. https://doi.org/10.1007/s10531-009-9594-6
  9. Forbes, A.E. and J.M. Chase. 2002. The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos 96: 433-440. https://doi.org/10.1034/j.1600-0706.2002.960305.x
  10. Goseong County. 2011. Status survey of Dumbeong in Goseong County. Goseong County. pp. 273.
  11. Hayek, L-A.C. and M.A. Buzas. 1997. Surveying Natural Populations. Columbia University Press, New York. pp. 563.
  12. Holland, T.A. and D.G. Jenkins. 1998. Comparison of processes regulating zooplankton assemblages in new freshwater ponds. Hydrobiologia 387/388: 207-214.
  13. Holzkamper, A. and R. Seppelt. 2007. Evaluating cost-effectiveness of conservation management actions in an agricultural landscape on a regional scale. Biological Conservation 136: 117-127. https://doi.org/10.1016/j.biocon.2006.11.011
  14. Jongman, R., C.J.F. ter Braak and O. van Tongeren. 1995. Data analysis in community and landscape ecology. Cambridge University Press. pp. 324.
  15. Kim, J.O., H.S. Shin, J.H. Yoo, S.H. Lee, H.S. Jang and B.C. Kim. 2011a. Physicochemical and biological properties of constructed small-scale ponds for ecological improvement in paddy fields. Korean Journal of Limnology 44: 253-263.
  16. Kim, J.O., H.S. Shin, J.H. Yoo, S.H. Lee, H.S. Jang and B.C. Kim. 2011b. Functional evaluation of small-scale pond at paddy field as a shelter for mudfish during midsummer drainage period. Korean Journal Environmental Agriculture 30: 37-42. https://doi.org/10.5338/KJEA.2011.30.1.37
  17. Kobori, H. and B.R.B. Primack. 2003. Participatory conservation approaches for Satoyama, the traditional forest and agricultural landscape of Japan. A Journal of the Human Environment 32: 307-311.
  18. Koste, W. 1978. Rotatoria, die Radertiere Mitteleuropas: Uberordnung Monogononta: ein Bestimmungswerk, 2 edition. Gebruder Borntraeger, Stuttgart.
  19. Lambshead, P.J.D. and M. Hodda. 1994. The impact of disturbance on measurements of variability in marine nematode populations. Vie et Milieu 44: 21-27.
  20. Lynch, M. 1979. Predation, competition, and zooplankton community structure: an experimental study. Limnology and Oceanography 24: 253-272. https://doi.org/10.4319/lo.1979.24.2.0253
  21. Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University, New Jersey. pp. 7-45.
  22. McAleece, N., J. Lambshead, G. Patterson and J. Gage. 1997. BioDiversity Pro (Version 2). The Natural History Museum, London, and The Scottish Association of Marine Science, Oban, Scotland. Available from http://www nhm acuk/zoology/bdpro.
  23. McCune, B. and J.B. Grace. 2002. Analysis of ecological communities. MJM Software Design, Gleneden Beach, Oregon. pp. 300.
  24. Rice, A.L. and P.J.D. Lambshead. 1994. Patch dynamics in the deep-sea benthos: the role of a heterogeneous supply of organic matter. Aquatic Ecology: scale, pattern and process. 34th Symposium of The British Ecological Society. Blackwell Scientific Publications, Oxford. pp. 469-499.
  25. Scheffer, M., G.J. Van Geest, K. Zimmer, E. Jeppesen, M. Sondergaard, M.G. Butler, M.A. Hanson, S. Declerck and L. De Meester. 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227-231. https://doi.org/10.1111/j.0030-1299.2006.14145.x
  26. Shurin, J.B., J.E. Havel, M.A. Leibold and B. Pinel-Alloul. 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062-3073. https://doi.org/10.1890/0012-9658(2000)081[3062:LARZSR]2.0.CO;2
  27. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacea). Australian Museum.
  28. ter Braak, C. and P. Smilauer. 2002. CANOCO reference manual and and CanoDraw for user's guide to Canoco for Windows: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York. pp. 500.
  29. Tscharntke, T., A.M. Klein, A.K. Ingolf, S. Dewenter and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters 8: 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  30. Wetzel, R.G. 1975. Limnology. W. B. Saunders Company, Philadelphia. pp. 743.
  31. Williams, P., M. Whifteild, J. Biggs, S. Bray, G. Fox, P. Nicolet and D. Sear. 2003. Comparative biodiversity of river, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329-341.