Flavonoids from Thyrsanthera suborbicularis and Their NO Inhibitory Activity

  • Song, Hyuk-Hwan (Immune Modulator Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology) ;
  • Khiev, Piseth (University of Science & Technology) ;
  • Chai, Hee-Sung (Immune Modulator Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology) ;
  • Lee, Hyeong-Kyu (Immune Modulator Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology) ;
  • Oh, Sei-Ryang (Immune Modulator Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology) ;
  • Choi, Young Hee (College of Pharmacy, Dongguk University) ;
  • Chin, Young-Won (College of Pharmacy, Dongguk University)
  • Received : 2012.10.14
  • Accepted : 2012.12.17
  • Published : 2012.12.31

Abstract

Further phytochemical investigation on the whole plant of Thyrsanthera suborbicularis, collected in Cambodia, led to kaempferol (1), vitexin (2), apigenin-7-O-neohesperidoside (3), chrysoeriol-7-O-${\beta}$-D-glucopyranoside (4), isorhamnetin 3-O-rutinoside (5), kaempferol-3-O-[${\alpha}$-L-rhamnopyranosyl-(13)-${\alpha}$-L-rhamnopyranosyl-(16)-${\beta}$-D-galactopyranoside (6), kaempferol-3-O-${\alpha}$-L-rhamnopyranosyl(12)-O-[${\alpha}$-L-rhamnopyranosyl (16)]-${\beta}$-D-glucopyranoside (7), kaempferol-3-O-[6"-O-(E)-p-coumaroyl]-${\beta}$-D-glucopyranoside (8), kaempferol-3-O-[6"-O-(E)-p-coumaroyl]-${\beta}$-D-galactopyranoside (9), and amentoflavone (10). All the structures were confirmed by the interpretation of NMR (1D and 2D) and MS data, and comparison with the published values. Of the isolated compounds 1 - 10, compounds 8 and 10 displayed the inhibitory activity against NO production in LPS-induced Raw 264.7 cells with $IC_{50}$ values, 3.56 and $15.73{\mu}M$, respectively.

Keywords

References

  1. Burns, D.C., Ellis, D.A., and March, R.E., A predictive tool for assessing $^{13}C$ NMR chemical shifts of flavanoids. Magn. Reson. Chem. 45, 835-845 (2007). https://doi.org/10.1002/mrc.2054
  2. Chae, H.S., Kang, O.H., Choi, J.G., Oh, Y.C., Lee, Y.S., Jang, H.J., Kim, J.H., Dinda, B., Ghosh, B., Achari, B., Arima, S., Sato, N., and Harigaya, Y., Chemical constituents of Gomphrena globosa. II. Nat. Prod. Sci. 12, 89-93 (2006).
  3. Djoukeng, J.D., Arbona, V., Argamasilla, R., and Gomez-Cadenas, A., Flavonoid profiling in leaves of citrus genotypes under different environmental situations. J. Agric. Food Chem. 56, 11087-11097 (2008). https://doi.org/10.1021/jf802382y
  4. Dora, G., and Edwards, J.M., Toxonomic status of Lanaria lanata and isolation of a novel biflavone. J. Nat. Prod. 54, 796-801 (1991). https://doi.org/10.1021/np50075a007
  5. Fukunaga, T., Kajikawa, I., Nishiya, K., Watanabe, Y., Suzuki, N., Takeya, K., and Itokawa, H., Studies on the constituents of the European Mistletoe, Viscum album L. II. Chem. Pharm. Bull. 36, 1185-1189 (1988). https://doi.org/10.1248/cpb.36.1185
  6. Kim, J.E., Jung, M.J., Jung, H.A., Woo, J.J., Cheigh, H.K., Chung, H.C., and Choi, J.S., A new kaempferol 7-O-triglucoside from the leaves of Brassica juncea L. Arch. Pharm. Res. 25, 621-624 (2002). https://doi.org/10.1007/BF02976932
  7. Lakenbrink, M., Lam, T.M., Engelhardt, U.H., and Wray, V., New flavonol triglucosides from tea (Camellia sinensis). Nat. Prod. Lett. 14, 233-238 (2000). https://doi.org/10.1080/10575630008041237
  8. Palmer R.M., Ashton, D.S., and Moncada, S., Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666 (1988). https://doi.org/10.1038/333664a0
  9. Park, H., Jung, K.Y., Sohn, D.H., and Kwon, D.Y., 5-Hydroxytryptophan acts on the mitogen-activated protein kinase extracellular-signal regulated protein kinase pathway to modulate cyclooxygenase-2 and inducible nitric oxide synthase expression in Raw 264.7 cells. Biol. Pharm. Bull. 32, 553-557 (2009). https://doi.org/10.1248/bpb.32.553
  10. Pauline, D.P. "Dictionary of plants used in Cambodia". Phnom Penh, Cambodia: Imprimerie Olympic; 2000. pp.103.
  11. Piseth, K., Oh, S.R., Chae, H.S., Kwon, O.K., Ahn, K.S., Chin, Y.-W., and Lee, H.-K., Anti-inflammatory diterpene from Thyrsanthera suborbicularis. Chem. Pharm. Bull. 59, 382-384 (2011). https://doi.org/10.1248/cpb.59.382
  12. Rao, Y.K., Fang, S.H., and Tzeng, Y.M., Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-.. and IL-12 in activated macrophages. Biol. Pharm. Bull. 28, 912-915 (2005). https://doi.org/10.1248/bpb.28.912
  13. Vallance, P., and Leiper, J., Blocking NO synthesis: how, where and why? Nat. Rev. Drug. Discov. 12, 939-950 (2002).
  14. Woo, E.R., Lee, J.Y., Cho, I.J., Kim, S.G., and Kang, K.W., Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacol. Res. 51, 539-546 (2005). https://doi.org/10.1016/j.phrs.2005.02.002
  15. Yoshitama, K., Oyamada, T., and Yahara, S., Flavonoids in the leaves of Trillium undulatum Willdenow. J. Plant Res. 110, 379-381 (1997). https://doi.org/10.1007/BF02524937
  16. Zhang, D., Gao, H., Wang, L., Li, D., Kuroyanagi, and M., Wu, L., Flavonol glycosides from Castanea mollissima Blume. Asian J. Tradit. Med. 2, 229-234 (2007).