Inhibitory Effects of Fermented Gastrodia elata on High Glucose-induced NO and IL-8 Production in Human Umbilical Vein Endothelial Cells

  • Kwon, Se-Uk (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Jeon, Sung-Bong (Muju Health Foods co., Ltd.) ;
  • Xin, Mingje (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Kim, Jun-Ho (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Im, Ji-Young (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Cha, Ji-Yun (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Jee, Ho-Kyun (Muju Health Foods co., Ltd.) ;
  • Lee, Oh-Gu (Muju Health Foods co., Ltd.) ;
  • Kim, Dae-Ki (Department of Immunology and Institute of Medical Science, Chonbuk National University Medical School) ;
  • Lee, Young-Mi (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University)
  • Received : 2012.10.13
  • Accepted : 2012.12.15
  • Published : 2012.12.31

Abstract

Hyperglycemia or high glucose (HG), is the hallmark of diabetes, known to induce oxidative stress, release of chemokines, and cytokines, which confer endothelial cell damage. On the other hand, microbial transformation of organic materials often leads to certain changes in their product structures which could enhance their biological activities. The aim of this study was to investigate the beneficial effects of fermented Gastrodia elata (FGE) in HG induced human umbilical vein endothelial cells (HUVECs) dysfunction. GE, fermented by Saccharomyces cerevisiae, which has an extensive history of safe use, exhibited higher phenolic compounds content than those of Gastrodia elata (GE). The HG-induced production of nitric oxide (NO) and interleukin-8 (IL-8) were significantly attenuated by FGE pretreatment to the cells, in a concentration dependent manner. In addition, FGE showed marked activity in free radical scavenging. These results suggest that FGE possesses beneficial effects in protecting against the oxidative stress, and inflammatory conditions in endothelial cells, caused by HG.

Keywords

References

  1. World Health Organization. Diabetes 2011. Available at: http://www.who.int/mediacentre/factsheets/fs312/en/.
  2. Bae, E.A., Choo, M.K., Park, E.K., Park, S.Y., Shin, H.Y., and Kim, D.H., Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25, 743-747 (2002). https://doi.org/10.1248/bpb.25.743
  3. Bae, E.A., Park, S.Y., and Kim, D.H., Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23, 1481-1485 (2008).
  4. Baynes, J.W., Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412 (1991). https://doi.org/10.2337/diabetes.40.4.405
  5. Betsy, B.D., The pathophysiology of cardiovascular diseases and diabetes: beyond blood pressure and lipids. Diabetes Spectrum, 21, 160-165 (2008). https://doi.org/10.2337/diaspect.21.3.160
  6. Boisvert, W.A., Santiago, R., Curtiss, L.K., and Terkeltaub, R.A., A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest., 101, 353-363 (1998). https://doi.org/10.1172/JCI1195
  7. Brownlee, M., The pathobiology of diabetes complications: a unifying mechanism. Diabetes, 54, 1615-1625 (2005). https://doi.org/10.2337/diabetes.54.6.1615
  8. Dai, J.N., Zong, Y., Zhong, L.M., Li, Y.M., Zhang, W., Bian, L.G., Ai, Q.L., Liu, Y.D., Sun, J., and Lu, D., Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One, 6, e21891 (2011). https://doi.org/10.1371/journal.pone.0021891
  9. Esposito, K., Nappo, F., Giugliano, F., Di Palo, C., Ciotola, M., Barbieri, M., Paolisso, G., and Giugliano, D., Cytokine milieu tends toward inflammation in type 2 diabetes. Diabetes Care, 26, 1647 (2003). https://doi.org/10.2337/diacare.26.5.1647
  10. Gerszten, R.E., Garcia-Zepeda, E.A., Lim, Y.C., Yoshida, M., Ding, H.A., Gimbrone, M.A Jr., Luster, A.D., Luscinskas, F.W., and Rosenzweig, A., MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 398, 718-723 (1999). https://doi.org/10.1038/19546
  11. Ha, J.H., Shin, S.M., Lee, S.K., Kim, J.S., Shin, U.S., Huh, K, Kim, J.A., Yong, C.S., Lee, N.J., and Lee, D.U., In vitro effects of hydroxybenzaldehydes from Gastrodia elata and their analogues on GABAergic neurotransmission, and a structure-activity correlation. Planta. Med., 67, 877-880 (2001). https://doi.org/10.1055/s-2001-18844
  12. Hsieh, C.L., Chiang, S.Y., Cheng, K.S., Lin, Y.H., Tang, N.Y., Lee, C.J., Pon, C.Z., and Hsieh, C.T., Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. Am. J. Chin. Med., 29, 331-341 (2001). https://doi.org/10.1142/S0192415X01000356
  13. Hwang, S.M., Lee, Y.J., Kang, D.G., and Lee, H.S., Anti-inflammatory effect of Gastrodia elata rhizome in human umbilical vein endothelial cells. Am. J. Chin. Med., 37, 395-406 (2009). https://doi.org/10.1142/S0192415X09006916
  14. Ha, J.H., Lee, D.U., Lee, J.T., Kim, J.S., Yong, C.S., Kim, J.A., Ha, J.S., and Huh, K., 4-Hydroxybenzaldehyde from Gastrodia elata Bl. is active in the antioxidation and GABAergic neuromodulation of the rat brain. J. Ethnopharmacol., 73, 329-333 (2000). https://doi.org/10.1016/S0378-8741(00)00313-5
  15. Han, B.H., Park, M.H., Han, Y.N., Woo, L.K., Sankawa, U, Yahara, S, and Tanaka, O., Degradation of ginseng saponins under mild acidic conditions. Planta. Med., 44, 146-149 (1982). https://doi.org/10.1055/s-2007-971425
  16. Jang, Y.W., Lee, J.Y., and Kim, C.J., Anti-asthmatic activity of phenolic compounds from the roots of Gastrodia elata Bl. Int. Immunopharmacol., 10, 147-154 (2010). https://doi.org/10.1016/j.intimp.2009.10.009
  17. Jung, Y.M., Lee, S.H., Lee, D.S., You, M.J., Chung, I.K., Cheon, W.H., Kwon, Y.S., Lee, Y.J., and Ku, S.K., Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr. Res., 31, 387-396 (2011). https://doi.org/10.1016/j.nutres.2011.04.005
  18. Kim, H.J., Hwang, I.K., and Won, M.H., Vanillin, 4-hydroxybenzyl aldehyde and 4-hydroxybenzyl alcohol prevent hippocampal CA1 cell death following global ischemia. Brain Res., 1181, 130-141 (2007).
  19. Kinoshita, K., Tanjoh, K., Noda, A., Sakurai, A., Yamaguchi, J., Azuhata, T., Utagawa, A., and Moriya, T., Interleukin-8 production from human umbilical vein endothelial cells during brief hyperglycemia: the effect of tumor necrotic factor-alpha. J. Surg. Res., 144, 127-131 (2008). https://doi.org/10.1016/j.jss.2007.03.020
  20. Ko, S.R., Choi, K.J., Uchida, K., and Suzuki, Y., Enzymatic preparation of ginsenosides Rg2, Rh1, and F1 from proto-panaxatriol-type ginseng saponin mixture. Planta. Med., 69, 285-286 (2003). https://doi.org/10.1055/s-2003-38476
  21. Kuroki, T., Isshiki, K., and King, G.L., Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J. Am. Soc. Nephrol., 14, S216-S220 (2003). https://doi.org/10.1097/01.ASN.0000077405.07888.07
  22. Lee, J.Y., Jang, Y.W., Kang, H.S., Moon, H., Sim, S.S., and Kim, C.J., Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch. Pharm. Res., 29, 849-858 (2006). https://doi.org/10.1007/BF02973905
  23. Lee, Y.J., Kang, D.G., Kim, J.S., and Lee, H.S., Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells. Phytother. Res., 22, 1655-1659 (2008a). https://doi.org/10.1002/ptr.2547
  24. Lee, Y.J., Kang, D.G., Kim, J.S., and Lee, H.S., Effect of Buddleja officinalis on high-glucose-induced vascular inflammation in human umbilical vein endothelial cells. Exp. Biol. Med. (Maywood), 233, 694-700 (2008b). https://doi.org/10.3181/0710-RM-286
  25. Lirk, P., Hoffmann, G., and Rieder, J., Inducible nitric oxide synthase-time for reappraisal. Curr. Drug Targets Inflamm. Allergy, 1, 89-108 (2002). https://doi.org/10.2174/1568010023344913
  26. Liu, J., Wei, S., Tian, L., Yan, L., Guo, Q., and Ma, X., Effects of endomorphins on human umbilical vein endothelial cells under high glucose. Peptides, 32, 86-92 (2011) https://doi.org/10.1016/j.peptides.2010.09.020
  27. Madamanchi, N.R., Vendrov, A., and Runge, M.S., Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol., 25, 29-38 (2005).
  28. Maeda, H. and Akaike, T., Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc), 63, 854-865 (1998).
  29. Marigo, L., Cerreto, R., Giuliani, M., Somma, F., Lajolo, C., and Cordaro, M., Diabetes mellitus: biochemical, histological and microbiological aspects in periodontal disease. Eur. Rev. Med. Pharmacol. Sci., 15, 751-758 (2011).
  30. Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M.J., and Rouis, M., Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation, 99, 420-426 (1999). https://doi.org/10.1161/01.CIR.99.3.420
  31. Nevoigt, E., Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 72, 379-412 (2008). https://doi.org/10.1128/MMBR.00025-07
  32. Park, C.S., Yoo, M.H., Noh, K.H., and Oh, D.K., Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol., 87, 9-19 (2010). https://doi.org/10.1007/s00253-010-2567-6
  33. Reusch, J.E., Diabetes, microvascular complications, and cardiovascular complications: what is about glucose? J. Clin. Invest., 112, 986-988 (2003).
  34. Romuk, E., Skrzep-Poloczek, B., Wojciechowska, C., Tomasik, A., Birkner, E., Wodniecki, J., Gabrylewicz, B., Ochala, A., and Tendera, M., Selectin-P and interleukin-8 plasma levels in coronary heart disease patients. Eur. J. Clin. Invest., 32, 657-661 (2002). https://doi.org/10.1046/j.1365-2362.2002.01053.x
  35. Temaru, R., Urakaze, M., Satou, A., Yamazaki, K., Nakamura, N., and Kobayashi, M., High glucose enhances the gene expression of interleukin-8 in human endothelial cells, but not in smooth muscle cells: possible role of interleukin-8 in diabetic macroangiopathy. Diabetologia, 40, 610-613 (1997). https://doi.org/10.1007/s001250050723
  36. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J., and Saiki, I., An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun., 246, 725-730 (1998). https://doi.org/10.1006/bbrc.1998.8690
  37. Xiang, X., Yanying, L., and Xiaodong, B., Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons. Planta. Med., 73, 650-654 (2007). https://doi.org/10.1055/s-2007-981523
  38. Xu, X., Lu, Y., and Bie, X., Protective effects of gastrodin on hypoxiainduced toxicity in primary cultures of rat cortical neurons. Planta. Med., 73, 650-654 (2007). https://doi.org/10.1055/s-2007-981523
  39. Yamagishi, S. and Matsui, T., Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol. Res., 64, 187-194 (2011). https://doi.org/10.1016/j.phrs.2011.05.009
  40. Yang, H.J., Weon, J.B., Lee, B., and Ma, C.J., The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn. Mag., 7, 207-212 (2011). https://doi.org/10.4103/0973-1296.84234
  41. Yu, S.J., Kim, J.R., Lee, C.K., Han, J.E., Lee, J.H., Kim, H.S., Hong, J.H., and Kang, S.G., Gastrodia elata Blume and an active component, phydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions. Biol. Pharm. Bull., 28, 1016-1020 (2005). https://doi.org/10.1248/bpb.28.1016
  42. Yu, S.S., Zhao, J., Zheng, W.P., and Zhao, Y., Neuroprotective effect of 4-hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-apoptosis in rats. Brain Res., 1308, 167-175 (2010).
  43. Zeng, X., Zhang, S., Zhang, L., Zhang, K., and Zheng, X., A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta. Med., 72, 1359-1365 (2006). https://doi.org/10.1055/s-2006-951709