References
- Akiyama, S., Katsumata, S., Suzuki, K., Ishimi, Y., Wu, J., and Uehara, M., Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J. Clin. Biochem. Nutr. 46(1), 87-92 (2010).
- Akiyama, S., Katsumata, S., Suzuki, K., Nakaya, Y., Ishimi, Y., and Uehara, M., Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci. Biotechnol. Biochem. 73(12), 2779-2782 (2009). https://doi.org/10.1271/bbb.90576
- Bastard, J.P., Maachi, M., Lagathu, C., Kim, M.J., Caron, M., Vidal, H., Capeau, J., and Feve, B., Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17(1), 4-12 (2006).
- Berg, A.H. and Scherer, P.E., Adipose tissue, inflammation, and cardiovascular disease. Circulation Research 96, 939-949 (2005). https://doi.org/10.1161/01.RES.0000163635.62927.34
- Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang, J., and Liu, J., Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol. 48(10), 2980-2987 (2010). https://doi.org/10.1016/j.fct.2010.07.037
- Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D., and Van Obberghen, E., SOCS-3 is an insulin-induced negative regulator of insulin signaling. J. Biol. Chem. 275, 15985-15991 (2000). https://doi.org/10.1074/jbc.275.21.15985
- Fain, J.N., Madan, A.K., Hiler, M.L., Cheema, P., and Bahouth, S.W., Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145(5), 2273-2282 (2004). https://doi.org/10.1210/en.2003-1336
- Fontana, L., Eagon, J.C., Trujillo, M.E., Scherer, P.E., and Klein, S., Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56(4), 1010-1013 (2007). https://doi.org/10.2337/db06-1656
- Ganapathi, M.K., Rzewnicki, D., Samols, D., Jiang, S.L., and Kushner, I., Effect of combinations of cytokines and hormones on synthesis of serum amyloid A and C-reactive protein in Hep 3B cells. J. Immunol. 147(4), 1261-1265 (1991).
- Garg, A., Garg, S., Zaneveld, L.J., and Singla, A.K., Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15(8), 655-669 (2001). https://doi.org/10.1002/ptr.1074
- Jain, M. and Parmar, H.S., Evaluation of antioxidative and antiinflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm. Res. 60(5), 483-491 (2011). https://doi.org/10.1007/s00011-010-0295-0
- Jung, U.J., Lee, M.K., Park, Y.B., Kang, M.A., and Choi, M.S., Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell. Biol. 38(7), 1134-1145 (2006). https://doi.org/10.1016/j.biocel.2005.12.002
- Kamaraj, S., Ramakrishnan, G., Anandakumar, P., Jagan, S., and Devaki, T., Antioxidant and anticancer efficacy of hesperidin in benzo(a) pyrene induced lung carcinogenesis in mice. Invest. New Drugs 27(3), 214-222 (2009). https://doi.org/10.1007/s10637-008-9159-7
- Kaptein, A., Paillard, V., and Saunders, M., Dominant negative STAT3 mutant inhibits interleukin-6 induced Jak-STAT signal transduction. J. Biol. Chem. 271, 5961-5964. (1996). https://doi.org/10.1074/jbc.271.11.5961
- Kaur, G., Tirkey, N., and Chopra, K., Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology 226(2-3), 152-160 (2006). https://doi.org/10.1016/j.tox.2006.06.018
- Kim, H.J., Higashimori, T., Park, S.Y., Choi, H., Dong, J., Kim, Y.J., Noh, H.L., Cho, Y.R., Cline, G., Kim, J.H., Bachmann, R.A., and Chen, J., Interleukin-6 and insulin resistance. Vitam. Horm. 80, 613-633 (2009).
- Klover, P.J., Clementi, A.H., and Mooney, R.A., Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 146(8), 3417-3427 (2005). https://doi.org/10.1210/en.2004-1468
- Klover, P.J., Zimmers, T.A., Koniaris, L.G., and Mooney, R.A., Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52, 2784-2789 (2003). https://doi.org/10.2337/diabetes.52.11.2784
- Kramer, F., Torzewski, J., Kamenz, J., Veit, K., Hombach, V., Dedio, J., and Ivashchenko, Y., Interleukin-1beta stimulates acute phase response and C-reactive protein synthesis by inducing an NFkappaBand C/EBPbeta-dependent autocrine interleukin-6 loop. Mol. Immunol. 45(9), 2678-2689 (2008). https://doi.org/10.1016/j.molimm.2007.12.017
- Meshkani, R. and Adeli, K., Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem. 42(13-14), 1331-1346 (2009). https://doi.org/10.1016/j.clinbiochem.2009.05.018
- Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E., and Ridker, P.M., Creactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J. Am. Med. Assoc. 286, 327-334 (2001). https://doi.org/10.1001/jama.286.3.327
- Ridker, P.M. and Morrow, D.A., C-reactive protein, inflammation, and coronary risk. Cardiol. Clin. 21(3), 315-325 (2003). https://doi.org/10.1016/S0733-8651(03)00079-1
- Saad, B., Frei, K., Schol, F.A., Fontana, A., and Maier, P., Hepatocytederived interleukin-6 and tumor-necrosis factor alpha mediate the lipopolysaccharide-induced acute-phase response and nitric oxide release by cultured rat hepatocytes. Eur. J. Biochem. 229(2), 349-355 (1995). https://doi.org/10.1111/j.1432-1033.1995.0349k.x
- Senn, J.J., Klover, P.J., Nowak, I.A., and Mooney, R.A., Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391-3399 (2002). https://doi.org/10.2337/diabetes.51.12.3391
- Senn, J.J., Klover, P.J., Nowak, I.A., Zimmers, T.A., Koniaris, L.G., Furlanetto, R.W., and Mooney, R.A., Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278, 13740-13746 (2003). https://doi.org/10.1074/jbc.M210689200
- Ueki, K., Kondo, T., and Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol. 24, 5434-5446 (2004). https://doi.org/10.1128/MCB.24.12.5434-5446.2004
- Xi, L., Xiao, C., Bandsma, R.H., Naples, M., Adeli, K., and Lewis, G.F., C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: Role of mitogen-activated protein kinases. Hepatology 53(1), 127-135 (2011). https://doi.org/10.1002/hep.24011
- Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A., and Chen, H., Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. J. Clin. Invest. 112, 1821-1830 (2003).
- Yeh, C.C., Kao, S.J., Lin, C.C., Wang, S.D., Liu, C.J., and Kao, S.T., The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci. 80(20), 1821-1831 (2007). https://doi.org/10.1016/j.lfs.2007.01.052
- Zhang, D., Sun, M., Samols, D., and Kushner, I., STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J. Biol. Chem. 271(16), 9503-9509 (1996). https://doi.org/10.1074/jbc.271.16.9503
- Zhou, J., Wang, Q., Wang, Q., and Duan, W., Effects of norcantharidin on lipopolysaccharide-induced hepatocyte injury in vitro. Zhong Nan Da Xue Xue Bao Yi Xue Ban 37(3), 285-289 (2012).