DOI QR코드

DOI QR Code

Electrochemical Characteristics of Li3V2(PO4)3 Negative Electrode as a Function of Crystallinity

결정화도에 따른 Li3V2(PO4)3 음극의 전기화학적 특성

  • Ku, Jun-Whan (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University) ;
  • Park, Kyung-Jin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University) ;
  • Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Oh, Seung-Mo (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
  • 구준환 (서울대학교 화학생물공학부 에너지환경화학융합기술) ;
  • 박경진 (서울대학교 화학생물공학부 에너지환경화학융합기술) ;
  • 류지헌 (한국산업기술대학교 지식기술기반 에너지대학원) ;
  • 오승모 (서울대학교 화학생물공학부 에너지환경화학융합기술)
  • Received : 2011.11.24
  • Accepted : 2011.12.27
  • Published : 2012.02.28

Abstract

$Li_3V_2(PO_4)_3$/carbon composite materials are synthesized from a sucrose-containing precursor. Amorphous $Li_3V_2(PO_4)_3/C$ (a-LVP/C) and crystalline $Li_3V_2(PO_4)_3/C$ (c-LVP/C) are obtained by calcining at $600^{\circ}C$ and $800^{\circ}C$, respectrively, and electrochemical performance as the negative electrode for lithium secondary batteries is compared for two samples. The a-LVP electrode shows much larger reversible capacity than c-LVP, which is ascribed to the spatial $Li^+$ channels and flexible structure of amorphous material. In addition, this electrode shows an excellent rate capability, which can be accounted for by the facilitated $Li^+$ diffusion through the defect sites. The sloping voltage profile is another advantageous feature for easy SOC (state of charge) estimation.

열처리 온도를 $600^{\circ}C$$800^{\circ}C$로 다르게 하여 비정질 및 결정질구조의 탄소를 포함하는 $Li_3V_2(PO_4)_3/C$분말을 각각 합성하였으며, 결정성에 따른 리튬 이차전지용 음극으로의 특성을 비교하였다. 결정질 $Li_3V_2(PO_4)_3/C$은 추가반응에 의하여 리튬이 저장되기 때문에 260 mAh $g^{-1}$의 제한된 용량만을 지니고 있음에 비하여, 비정질 $Li_3V_2(PO_4)_3/C$는 3가의 바나듐이 금속상태에 근접할 정도로 가역적으로 반응되어 460 mAh $g^{-1}$의 큰가역용량을 발현함을 확인하였다. 이는 비정질 구조에서 기인하는 특성으로 유연한 구조로 인한 새로운 리튬의 저장공간이 확보되는 것 때문이라 할 수 있다. 또한, 비정질 $Li_3V_2(PO_4)_3/C$는 비정질 구조에 기인하는 선형적인 충방전 곡선을 지니고 있어 정확한 충전심도의 예측이 용이할 뿐만 아니라, 결함구조에서 유발된 리튬이온의 향상된 확산성으로 인하여 우수한 속도 특성도 나타내고 있다.

Keywords

References

  1. T. Ohzuku, T. Kodama, and T. Hirai, 'Electrochemistry of anatase titanium-dioxide in lithium nonaqueous cells' J. Power Sources, 14, 153 (1985). https://doi.org/10.1016/0378-7753(85)88026-5
  2. B. Y. Liaw, I. D. Raistrick, and R. A. Huggins, 'Thermodynamic and structural consideration in lithium vanadium bronze structures' Solid State Ionics, 45, 323 (1991). https://doi.org/10.1016/0167-2738(91)90168-B
  3. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, 'Nano-sized transition metaloxides as negativeelectrode materials for lithium-ion batteries' Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  4. H. Li, P. Balaya, and J. Maier, 'Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides' J. Electrochem. Soc., 151, A1878 (2003). https://doi.org/10.1149/1.1801451
  5. J. H. Ku, Y. S. Jung, K. T. Lee, C. H. Kim, and S. M. Oh, 'Thermoelectrochemically activated $MoO_2$ powder electrode for lithium secondary batteries' J. Electrochem. Soc., 156, A688 (2009). https://doi.org/10.1149/1.3141670
  6. Darent, B. deB.National Standard Reference Data Series: National Bureau of Standards No. 31 (Washington, 1970).
  7. I. Mochida, C. Ku, S. Yoon, and Y. Korai, 'Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries' J. Power Sources, 75, 214 (1998). https://doi.org/10.1016/S0378-7753(98)00101-3
  8. C. H. Park, S. Yoon, S. I. Lee, and S. M. Oh, '$Li^+$ storage sites in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitches' Carbon, 38, 995 (2000). https://doi.org/10.1016/S0008-6223(99)00205-5
  9. I. Mochida, C. Ku, and Y. Korai, 'Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches' Carbon, 39, 399 (2001). https://doi.org/10.1016/S0008-6223(00)00137-8
  10. G. T. K. Fey, D. C. Lee, Y. Y. Lin, and T.P . Kumar, 'High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials' Synthetic Metals, 139, 71 (2003). https://doi.org/10.1016/S0379-6779(03)00082-1
  11. K. E. Swider-Lyons, C. T. Love, and D. R. Rolison, 'Improved lithium capacity of defective $V_2O_5 $materials' Solid State Ionics, 152-153, 99 (2002). https://doi.org/10.1016/S0167-2738(02)00350-8
  12. C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, 'New cathode materials for rechargeable batteries: The 3-D framework structures $Li_{3}Fe_{2}(XO_{4})_{3}$ (X = P,As)' J. Solid State Chem. 135, 228 (1998). https://doi.org/10.1006/jssc.1997.7629
  13. A. Tang, X. Wang, and S. Yang, 'A novel method to synthesize $Li_3V_2(PO_4)_3/C$ composite and its electrochemical Li intercalation performances' Mater. Lett., 62, 1646 (2008). https://doi.org/10.1016/j.matlet.2007.09.064
  14. M. M. Ren, Z. Zhou, X.P . Gao, W. X. Peng, and J. P. Wei, 'Core-shell LiV(PO)@C composites as cathode materials for lithium-ion batteries' J. Phys. Chem. C, 112, 5689 (2008). https://doi.org/10.1021/jp800040s
  15. C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, and J. Sun, 'Hydrothermal synthesis of carbon-coated lithium vanadium phosphate' Electrochim. Acta, 54, 623 (2008). https://doi.org/10.1016/j.electacta.2008.07.038
  16. W. Xing, J. S. Xue, and J. R. Dahn, 'Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries' J. Electrochem. Soc., 143, 3.46 (1996).
  17. A. V. Chadwick, S. L. P. Savin, S. Fiddy, r. Alcantara, D. F. Lisbona, P. Lavela, G. F. Ortiz, and J. L. Tirado, 'Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with $NiCo_2O_4$: Xray absorption spectroscopic study' J. Phys. Chem. C, 111, 4636 (2007). https://doi.org/10.1021/jp066417u
  18. H. Fang, M. Liu, D. Wang, T. Sun, D. Guan, F. Li, J. Zhou, T. Sham, and H. Cheng, 'Comparison of the rate capability of nanostructured amorphous and anatase $TiO_{2}$ for lithium insertion using anodic $TiO_{2}$ nanotube arrays', Nanotechnology, 20, 225701 (2009). https://doi.org/10.1088/0957-4484/20/22/225701