DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of [Li0.04(Na0.5K0.5)0.96](Nb0.86Ta0.10Sb0.04)O3 Ceramics Doped with SrO

SrO의 첨가에 따른 [Li0.04(Na0.5K0.5)0.96](Nb0.86Ta0.10Sb0.04)O3세라믹스의 유전 및 압전 특성

  • Park, Min-Ho (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2012.01.31
  • Accepted : 2012.02.24
  • Published : 2012.03.01

Abstract

In this study, $[Li_{0.04}(Na_{0.5}K_{0.5})_{0.96}](Nb_{0.86}Ta_{0.10}Sb_{0.04})O_3+xSrO$ (x=0, 0.0025, 0.005, 0.0075) ceramics were synthesized by the conventional mixed oxide method. The X-ray diffraction patterns demonstrated that ceramics possessed single perovskite structure. The SEM images indicate that microstructure can be obviously affected by a small amount of added SrO. The phase transition temperature tetragonal-cubic($T_c$) and orthorhombic-tetragonal($T_{o-t}$) shifts downward and upward with the increase of Sr addition, respectively. The excellent piezoelectric properties of $d_{33}=170[pC/N]$, $k_p=0.37$, $Q_m=64.12$, $T_{o-t}=153^{\circ}C$ and $T_c=370^{\circ}C$ were obtained from the 0.25 mol% Sr added ceramics sintered at $1,120^{\circ}C$ for 1 h.

Keywords

References

  1. C. Zhang, Z. Chen, W. Ji, L. Wang, Y. Chen, S. YaO, S. Zhang, and Y. Chen, J. Alloys Compd., 509, 2425 (2011). https://doi.org/10.1016/j.jallcom.2010.11.037
  2. M. Sutapun, C. Huang, D. Cann, and N. Vittayakorn, J. Alloys Compd., 479, 462 (2009). https://doi.org/10.1016/j.jallcom.2008.12.096
  3. Y. Satio, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 24 (2004). https://doi.org/10.1038/nature03142
  4. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  5. E. Ringgaard and T. Wurlitzer, J. Eur. Ceram. Soc., 25, 2701 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  6. J. Yoo, D. Oh, Y. Jeong, J. Hong, and M. Jung, Mater. Lett., 58, 3831 (2004). https://doi.org/10.1016/j.matlet.2004.08.011
  7. Z. P. Yang, Y. F. Chang, and L. L. Wei, Appl. Phys. Lett., 90, 042911 (2007). https://doi.org/10.1063/1.2436648
  8. R. E. Jaeger and L. Egerton, J. Am. Ceram. Soc., 45, 209 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
  9. Q. Y. Yin, S. G. Yuan, Q. Dong, and C. Tian, J. Alloys Compd., 491, 340 (2010). https://doi.org/10.1016/j.jallcom.2009.10.168
  10. S. Lee, S. Lee, and H. Lee, Current Appl. Phys., 11, S6 (2011). https://doi.org/10.1016/j.cap.2011.01.045
  11. X. Chen, J. Wu, X. Cheng, B. Wu, W. Wu, D. Xiao, and J. Zhu, Current Appl. Phys., 12, 752 (2012). https://doi.org/10.1016/j.cap.2011.10.014
  12. X. Pang, J. Qiu, K. Zhu, and J. Du, Ceram. Int., 38, 2521 (2012). https://doi.org/10.1016/j.ceramint.2011.11.022
  13. J. Hao, R. Chu, Z. Xu, G. Zang, and G. Li. J. Alloys Compd., 479, 376 (2009). https://doi.org/10.1016/j.jallcom.2008.12.069