

Design Requirements in Software and
Engineering Systems

A. M. Eleiche*
Dept. of Mechanical Engineering, King Fahd University of Petroleum and Minerals

I. Ahmad
Dept. of Information and Computer Sciences, King Fahd University of Petroleum and Minerals

M. O. Elish
Dept. of Information and Computer Sciences, King Fahd University of Petroleum and Minerals

(Received: November 13, 2011 / Revised: January 10, 2012 / Accepted: January 13, 2012)

ABSTRACT

The subject of “Design Requirements” (DR) is central to the design of software and engineering systems. The main
reason for this is that quality aspects are usually closely tied to requirements, among other things. In this review paper,
we consider how the subject of requirements is being managed in these two seemingly different design disciplines.
Two important aspects are covered, namely: (a) requirements development, describing various activities leading to
requirements documentation, and (b) requirements change management, describing various activities needed for the
proper treatment of the inevitable changes in requirements. Similarities and differences on how these two aspects are
handled in software and engineering systems are highlighted. It is concluded from this literature survey that the man-
agement of software requirements is quite coherent and well established as a science. On the other hand, management
of engineering systems requirements suffer from being unstructured, in particular when requirements changes are in-
volved. Important gaps and future important research areas are identified.

Keywords: Software Requirements Engineering, Design Requirements in Engineering Systems, Requirements
Development and Change Management

* Corresponding Author, E-mail: eleichea@kfupm.edu.sa

1. INTRODUCTION

In a previous paper (Eleiche, 2010), it was con-
cluded that in order to support innovative energy re-
search projects funded by the CCWCE (2008), innova-
tors should be provided with a software program that
can help manage the effects of possible changes in de-
sign requirements (DR) and hence facilitate the design
of successful quality systems on schedule and within
planned budgets. It was also stated that guidance would
be sought from similar research being carried out in the
software engineering arena.

In the present paper, we address in detail the sub-
ject of DR, which is central to the design of software
and engineering systems. The main reason for this is that

quality aspects are usually closely tied to requirements,
among other things. In this review paper, we consider
how the subject of requirements is being managed in
these two seemingly different disciplines. Two impor-
tant aspects are covered, namely: (a) requirements deve-
lopment, describing various activities leading to re-qui-
rements documentation, and (b) requirements change ma-
nagement, describing various activities needed for the
proper treatment of the inevitable changes in requi-re-
ments. Similarities and differences on how these two
aspects are handled in software and engineering systems
are highlighted. Important gaps and future important re-
search areas are also identified.

The next section introduces the topics related to
DR. in a generic way. This is followed in Section 3 by

Industrial Engineering
& Management Systems
Vol 11, No 1, Mar 2012, pp.70-81 http://dx.doi.org/10.7232/iems.2012.11.1.070
ISSN 1598-7248│EISSN 2234-6473│ © 2012 KIIE

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 71

an overview of how DR development is treated in soft-
ware and engineering systems, while Section 4 presents
how DR management is being applied in these same two
disciplines. Important conclusions are given finally in
Section 5.

2. REQUIREMENTS

IEEE (1990) defines “Requirement” as a condition
or capability that: (a) is needed by a user to solve a
problem or achieve an objective, (b) must be met or pos-
sessed by a system or system component to satisfy a
contract, standard, specification, or other formally im-
posed document. The set of all requirements forms the
basis for subsequent development of the system or sys-
tem component.

Requirements Engineering (RE) is a crucial aspect
for a successful development of software and engineer-
ing systems. The RE process is the primary work of the
“Requirements” phase of the project. Figure 1 shows the
sub disciplines of RE (Wiegers, 2000) consisting of two
major types of activities. In RE development, “User
Needs” are translated into “Requirements Specification”
through five activities that form a sub-process, while the
activities in RE management, namely traceability and
change, do not flow into each other but are separate.

Figure 1. Sub Disciplines of RE, Adapted from Wiegers

(2000).

3. REQUIREMENTS DEVELOPMENT (RD)

Requirements can be classified into: (a) Functional
requirements that capture the intended behavior in terms
of services, tasks or functions the system is required to
perform; (b) Non-functional requirements (or system
qualities) that capture required properties or qualities of
the system; (c) Constraints (organizational, operational,
economical, legislative, and ethical). All requirements
must be carefully derived through analysis of user needs
and documented. They should specify what is to be done,
not how it is to be done.

A good requirement should be (Tavassoli, 2009):
clear; complete; correct; consistent; verifiable; traceable;
feasible; modular; adaptable; and design-independent.

Nowhere more than in the requirements process do
the interests of all the stakeholders in a software or en-
gineering system project intersect. These include: (a)

external stakeholders (end users, customers acquiring
the product, suppliers, distributors, subcontractors, legis-
lators, policy makers); and (b) internal stakeholders (re-
quirements analysts, project managers, developers, de-
signers, manufacturing staff, testers, regulators and audi-
tors, sales and marketing, purchasing and finance, and
field support or help desk staff). Handled well, this in-
tersection can lead to exciting products, delighted cus-
tomers, and fulfilled developers. Handled poorly, it is
the source of misunderstanding, frustration, and friction
that undermine the product’s quality and business value.

3.1 RD in Software

Many software problems arise from shortcomings
in the ways that people acquire, document, agree on, and
modify the product’s requirements. Typical problem
areas include informal information gathering, implied
functionality, inadequately defined requirements, and a
casual change process (SERENA, 2011). The widely
quoted CHAOS report (Standish Group, 1995) relates
the consequences of casual approaches to requirements
engineering. Year after year, lack of user input, incom-
plete requirements, and changing requirements are the
major reasons why so many software and information
technology projects fail to deliver all of their planned
functionality on schedule and within budget.

In software engineering, RE has already been ac-
cepted as an independent discipline and is done system-
atically. As will be seen in the following, many concepts
and methods for handling of requirements have already
been elaborated. Hence, a common terminology of proc-
ess phases in RD has emerged, involving elicitation,
negotiation, analysis, specification and validation. This
is depicted in Fig. 2, as proposed by Kotonya and Som-
merville (1998).

Figure 2. Software RD Phases (Kotonya and Sommerville,

1998).

During the requirements elicitation phase, differ-

ent complementary techniques are applied to understand
the application domain, and the problems and needs of
all stakeholders. The most common software requirements
elicitation techniques are interviewing, brainstorming,
storyboarding, workshops, surveys/questionnaire, and
ethnography (Braude, 2010; Lamsweerde, 2009; Press-

Eleiche, Ahmad, and Elish: Industrial Engineering & Management Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 72

man, 2005; Sommerville, 2007; Wiegers, 2003). The
full integration of users is a decisive factor for the suc-
cess of this RD phase (Kujala et al., 2005).

 During requirements negotiation, the elicited re-
quirements are discussed with the stakeholders. Re-
quirements are then prioritized, unnecessary ones are
removed, and conflicting and incomplete ones are re-
solved. Requirements scope/baseline is also defined and
agreed upon (Kotonya and Sommerville, 1998). Priori-
tizing requirements “assists project managers with re-
solving conflicts, plan for staged deliveries, and make
necessary trade-off decision” (Aurum and Wohlin, 2005).

 During analysis, models are created from differ-
ent perspectives to develop an understanding of the sys-
tem, as well as checking for necessity, completeness,
consistency and feasibility. A system model abstracts
the system leaving out the unnecessary details. Models
enable to filter out the complexities of the real world not
relevant for the time being, so that directed effort can be
put towards the most important parts of the system un-
der development (Giaglis, 2001; Kotonya and Sommer-
ville, 1998; Sommerville, 2007). Moreover, visualizing
requirements as models helps the customer better under-
stand the requirements (Tavassoli, 2009).

Requirements specification refers to the production
of a requirement document which can be systematically
reviewed, evaluated, and approved (Bourque and Du-
puis, 2004). Once the requirements are agreed upon be-
tween the stakeholders and the development team, they
are specified in a document, popularly known as Soft-
ware Requirements Specification (SRS) document. This
is an official statement of what is required of the system
developers. Its purpose is to be an authoritative state-
ment of ‘what' the software is to do. As far as possible,
the document shall not address the design and imple-
mentations issues, and should be detailed enough to
allow the design of the software without user involve-
ment. In general, the size and content of the SRS docu-
ment should reflect the size and complexity of the soft-
ware product.

The many sections in the SRS document should de-
tail various aspects of the software system to be devel-
oped, mainly: functional requirements, non-functional
requirements, design constraints and interface specifica-
tions (Kotonya and Sommerville, 1998; Sommerville,
2007). IEEE (1998) has defined a standard known as
“IEEE Std 830-1998” which provides guidelines for
documenting software requirements specification.

The requirements document along with the models
can be and should be managed using requirements man-
agement tools such as Telelogic DOORS or IBM Ra-
tional RequisitePro.

The requirements validation process ensures that
the software engineer has understood the requirements.
It is also important to verify that a requirements docu-
ment conforms to company standards, and that it is un-
derstandable, consistent, and complete (Bourque and
Dupuis, 2004). The process attempts to identify the er-

rors in the SRS document before it is used as a basis for
further system development. In other words, require-
ment validation is concerned with demonstrating that the
requirements define the system that the customer really
wants. Prototyping, reviews, inspections, and test case
generation are the most commonly used requirements
validation techniques.

3.2 RD in Engineering Systems

By engineering systems, we mean consumer or ca-
pital products and systems ranging from simple to quite
complex ones. Especially in modern energy applications,
these may also incorporate many kinds of software, thus
forming “hybrid systems” that contain material and im-
material parts. The following discussion will be limited
to systems consisting of hardware only.

 In engineering systems design, RD is usually
taken into account, as stated in most engineering design
textbooks. For instance, Cross (1989) suggests the use
of a goal tree to vaguely collect the initial requirements.
The requirements are further refined as the problem un-
derstanding of the customer and engineers increases.
Pahl and Bietz (1996) suggest a sequential process model
in which the engineer has to extract the requirements
from the customer’s wishes. They also recognize that cu-
stomers are often not able to express their requirements
appropriately; however, methods for eliciting these re-
quirements are not suggested. Ulrich and Eppinger
(2008) collect the requirements in hierarchical weighted
lists. They also state that it is important to reveal im-
plicit customer needs, and that a common product un-
derstanding between customer and engineer is necessary.

In their comprehensive review, Jiao and Chen (2006)

state that RD usually encompasses only the three activi-
ties of elicitation, analysis and specification. During Eli-
citation, approaches used can be classified into:
• Psychology-based approaches: where techniques such

as Kansei engineering; Kawakita Jiro method, affinity
diagrams, and laddering can be employed.

• Methods and tools from the field of knowledge acqui-
sition: where techniques employed can be:
(a) “Contrived” (not-heavily dependent on natural

language dialogue, but good at reducing system-
atic bias, eliciting implicit knowledge, represent-
ing declarative and procedural knowledge): e.g.
sorting, laddering, repertory grids.

(b) “Non-contrived” (traditional) techniques: e.g. sur-
veys, observations, ethnography, self-reports, in-
terviews.

• AI-based approaches: where fuzzy systems, regres-
sion analysis, and expert systems have been devel-
oped for eliciting customer requirements more accu-
rately and objectively. Also, integrated approaches by
combining picture sorts and laddering, fuzzy evalua-
tion and neural network techniques.

• Knowledge recovery: from historical data.

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 73

 Case studies of elicitation in practice are available
in the literature. This is described by Mathelin et al.
(2005) for the automotive domain, and by Ward et al.
(2003) and Agouridas et al. (2006) for medical devices.

 Activities in the Analysis phase consist of:
• Understanding market and customer needs.
• Customer preference.
• Prioritization: By assigning different importance wei-

ghts for customer requirements. This affects the target
values to be set for the engineering characteristics.
Existing techniques are:
(a) AHP (Analytic hierarchy process)
(b) Fuzzy AHP
(c) Using supervised learning with a radial basis func-

tion (RBF) neural network
(d) Applying conjoint analysis to prioritize customer

requirements through pairwise comparisons
• Classification: This helps guiding the designer in com-

piling, organizing, and analyzing product design is-
sues. Existing techniques are:
(a) Affinity diagrams
(b) Ontology for representing requirements that sup-

ports a generic requirement process. Ontology de-
fines parts, features, requirements and constraints

(c) Taxonomic approach (developing a set of taxono-
mies to assist in gathering, storing, using and re-
using requirements)

Specification is concerned with the creation of a
structurally concrete and precise specification of product
requirements based on functional knowledge that has
been elicited from key stakeholders. Common techni-
ques are:
• Requirement transformation: e.g. Customer optimiza-

tion route and evaluation (CORE) model; methodology
of organizing specifications in engineering (MOOSE)

• QFD. To translate customer requirements to technical
design requirements

• Fuzzy QFD: To enhance handling of ambiguous re-
quirement information and evaluating inputs. Subjec-
tive crisp variables are expressed as fuzzy numbers

• Prioritization of design requirements. Importance ra-
ting among engineering characteristics in the QFD; a
linear programming model for the prioritization of de-
sign requirements in the QFD planning process; em-
ploying a fuzzy outranking approach to prioritize the
design requirements in the QFD

• Targets of design requirements: (usually defined by
design teams subjectively and empirically) Using a
fuzzy set theoretic approach to determine optimum
target values for the engineering characteristics in
QFD with consideration of the relevant constraints;
using fuzzy regression and fuzzy optimization.

Therefore, as the RD phases proceed, the informally
expressed needs of stakeholders are explored, developed
and expanded into a more complete and formal docu-
ment, variously known as the product description, tech-
nical specification, or Product Design Specification (PDS),
that is understood and agreed upon by all stakeholders,

and from which a design solution can be proposed.

3.3 Discussion on RD

RD in software engineering is highly elaborated
and many methods and process models are known. Soft-
ware engineering sees RD as a continuous activity that
is performed throughout the entire development process,
while product/systems engineering considers RD as a
phase at the beginning of the project.

The specification of requirements in software engi-
neering results from not only the transformation of cus-
tomer requirements from those end-users, but also con-
siderations of many engineering concerns. This is con-
sistent with the principle of viewpoint-oriented software
requirement engineering, where multiple viewpoints
encapsulate different types of requirement models natu-
ral to different stakeholders.

4. REQUIREMENTS MANAGEMENT (RM)

RM involves two main tasks, namely: (a) require-
ments traceability, performed once the specifications
have been documented, in order to determine the links
between various requirements; and (b) change impact
analysis, conducted at any stage of the design process,
once a change of any kind has been proposed, in order
to determine the feasibility, implications, cost, etc, of
such a change, and finally deciding on its approval, as
illustrated in Figure 3.

Figure 3. Generic Engineering Change Process
(Jarratt et al., 2004).

Changes in requirements are always expected. In-

deed, they are the norm and not the exception, since
most complex projects involve interdisciplinary system
scenarios. In these cases, the stakeholders needs are
usually not fully identified, and hence the requirements
and the specifications are loosely-defined. Therefore,
those initial requirements can be expected to change for
a variety of reasons, e.g. altered market needs, safety
concerns, problem corrections, new constraints, intro-
duction of new technologies, uncertainty of resources,
cost considerations, legislation changes, etc. On the other
hand, in such systems, components are usually highly
interconnected; a change to one requirement in one

Eleiche, Ahmad, and Elish: Industrial Engineering & Management Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 74

component can propagate through the system and cause
other changes in other components and parts. The change
can also spread to other products (e.g. other family mem-
bers) due to common platforms, other processes (e.g.
manufacturing), and other businesses (e.g. suppliers, part-
ners, etc.) (Jarratt et al., 2011). Hence, the need of full-
scale traceability between all system players.

In complex systems, it is important to identify and
stabilize the requirements as early as possible in the
process. Otherwise, inevitable changes will cause dis-
ruption of the product development schedule, increase
of costs, and failure to meet the expected system quality.
Table 1 shows the relative costs of fixing requirements
defects in different phases of a project. Whatever it may
cost to do things right in the requirements phase, it may
be 3 to 1000 times more costly to fix later.

Table 1. Relative Costs of Fixing Requirement errors

(Gause and Weinberg, 1989).

Phase in Which Fixed Relative Cost

Requirements 1
Design 3~6
Coding 10
Development Testing 15~40
Acceptance Testing 30~70
Operations 40~1000

Similarly, Table 2 shows that return on investment

(ROI) from practicing good requirements management
is substantial, in terms of its results and benefits.

Table 2. ROI from practicing good RM (SERENA, 2011).

R
es

ul
ts

 o
f G

oo
d

R
eq

ui
re

m
en

ts
 M

an
ag

em
en

t

Benefits of Good Requirements Management

Time to MarketQuality Cost

Fewer Product Defects

Reduced Development Rework

No Unnecessary Features

Faster Development

Less Miscommunication

Reduced Scope Creep

Reduced Project Chaos

Higher Customer Satisfaction

Table 3. Investing in Requirements Accelerate Develop-

ment (Blackburn et al., 1996).

Finally, a European study by Blackburn et al. (1996)
showed that teams that developed products more quickly
were found to have devoted more of their schedule and
effort to requirements than did slower teams (Table 3).

4.1 RM in Software

With respect to managing requirements change in
software development, the requirements can be broadly
categorized into volatile (requirements that are likely to
change), and non-volatile requirements (stable ones)
(Sommerville, 2007; De Lucia et al., 2008). As a proac-
tive way to manage changing requirements, the volatile
requirements are sometime further categorized. Catego-
rizing requirements helps in change management as the
reason and justification for change is better understood
and proper attention can be given to different categories
of non-volatile requirements (Sommerville, 2007; Harker
et al., 1993). Additionally, if a change can be catego-
rized, we can understand its impact and how much con-
trol we have on this change (McGee and Greer, 2009).
One of the popular categories of changing requirements
is that proposed by Harker et al. (1993). Sometimes the
changes are categorized from the developer’s perspec-
tive too (Nurmuliani et al., 2004). During categorization
of requirements, it is also helpful to assess the probabil-
ity of the change to that requirement (De Lucia et al.,
2008). A simplified view of the change management
process is shown in Figure 4.

Figure 4. Requirements Change Management Process.

A requirements change normally begins as a request,

either formal or informal. Informal change requests need
to be checked and controlled as far as possible as it leads
to many problems due to inadequate allocation of sche-
dule and manpower to manage those changes. A formal
change request needs to be documented from the begin-
ning. A change request has many attributes apart from
the requested change itself. Among the important attrib-
utes for a change request are type of change < add, de-
lete and modify > (Strens and Sugden, 1996; McGee and
Greer, 2009), the importance of change (O’Neal and
Carver, 2001), the reasons and justification and the source
of change (Nurmuliani et al., 2004; McGee and Greer,
2009). It may not be possible to collect and document all
the attributes for a given change request but the more

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 75

the information available on these attributes, the easier it
is to handle them.

Once the change request is received, the next im-
portant activity is to assess the impact of implementing
this change. This is popularly known as impact analysis.
Conducting impact analysis helps answer many ques-
tions related to the impact of implementing this change.
Among the important aspects are, when in development
cycle the change needs to be implemented (Ramzan and
Ikram, 2006; Imtiaz et al., 2008; Strens and Sugden, 1996),
what artifacts are impacted by this change (Ramzan and
Ikram, 2006; De Lucia et al., 2008; O’Neal and Carver,
2001; Imtiaz et al., 2008), the degree of change (De Lu-
cia et al., 2008; O’Neal and Carver, 2001; Strens and
Sugden, 1996) and who among the stakeholders are im-
pacted by the change (Ramzan and Ikram, 2005; O’Neal
and Carver, 2001). Figure 5 shows the impact of change
affecting different phases and artifacts.

Figure 5. Ripple Effect on Artifacts and Phases Due to

Change (Leffingwell and Widrig 2003).

One of the main techniques to do the impact analy-

sis is the use of traceability matrix. A traceability ma-
trix represents the dependency relationships between
different requirements and also across different artifacts.
This dependency relationship can be of different types
like ‘dependent,’ ‘related.’ There are different types of
traceability matrix depending on the level of details it
works on, the type of information it stores, etc. (Ibrahim
et al., 2005; O’Neal and Carver, 2001). An example of a
simple traceability matrix is shown in Figure 6. A com-
mon categorization of traceability matrix is vertical ver-
sus horizontal traceability matrix. A vertical traceability
matrix includes dependency relationship between arti-
facts and entities from different phase of development
whereas a horizontal traceability matrix includes rela-
tionship between artifacts and entities within a devel-
opment phase.

To come up with the traceability matrix for a pro-
ject is a major task. The core of this issue is to build the
dependency relationship between different entities and
artifacts. For relatively small projects it may be feasible

to build these relationships manually, but for large com-
plex systems, we need some level of automation (Ibra-
him et al., 2005). There are various techniques employed
for automation ranging from heuristics, information
retrieval, data mining, domain knowledge and this is a
hot area in research (Imtiaz et al., 2008). Moreover, the
relationship between artifacts and entities can be direct,
where an artifact or an entity is directly affected by the
change, or indirect, where an artifact or an entity may be
affected indirectly due to its relationship to other arti-
facts and entities that are affected directly by the pro-
posed change (Strens and Sugden, 1996). This phenome-
non is sometimes termed as “ripple effect”, and the
chain of this ripple effect may not be limited to only one
level but to a number of levels with different degree of
effect (Bohner, 2002, De Lucia et al., 2008, Ramzan and
Ikram, 2005).

Figure 6. A Sample Traceability Matrix (Leffingwell and

Widrig, 2003).

Once the impact analysis is conducted using the

traceability matrix, a candidate impact set is obtained
which includes all the artifacts and entities affected di-
rectly or indirectly by the proposed change. It shall be
kept in mind that this impact set is not always accurate
in the sense that it may not be able to include all the
possible artifacts and entities, and accordingly some of
them might be left out (termed as false negatives). Addi-
tionally, the impact set may include some artifacts and
entities which may in reality not be affected by this
change (termed as false positives) (Bohner, 2002). The
effectiveness of a given technique for impact analysis
and traceability matrix is mostly judged considering
these false positives and false negatives. Figure 7 shows
the process of impact analysis. The impact itself may be
measured in terms of degree and probability of impact.

The results of impact analysis is further studied by
employing cost benefit analysis which not only consid-
ers the technical implications of change but also other
aspects like management, administrative, cost/budget
and project schedule (Imtiaz et al., 2008). Once the com-
plete analysis is done, a final decision is made on
whether to implement this change request or to put the

Eleiche, Ahmad, and Elish: Industrial Engineering & Management Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 76

change request on hold. It is important that all the major
stakeholders participate in this process and be a part of
the final decision.

Figure 7. Impact analysis process (De Lucia et al. 2008).

It is also recommended that there be a clear process

and change control body who takes care of the entire
change management process instead of change creeping
in from anywhere with no proper control on them. This
may adversely affect the schedule, cost, and the final
quality of the software product. The concept of having
an independent change control board is very effective
and popular in this respect and is practiced widespread
(Leffingwell and Widrig, 2003). There are many re-
quirements change management process proposed in
literature and a good comparison on many of them is
available in (Ramzan and Ikram, 2005). The process of
change management involving change control board is
shown in Figure 8. The change control board acts like a
firewall by controlling the incoming change and pre-
venting the change creeping in through informal change
requests.

Figure 8. Change management through change control

board (Leffingwell and Widrig, 2003).

4.2 RM in Engineering Systems

General engineering changes during a system’s life-
cycle have been studied intensively in the last decade. A
comprehensive review has been reported recently by

Jarratt et al. (2011). The subject is still under continuous
development, hence no complete books have been de-
voted to the topic. Results have been published mainly
in journal or conference papers and a few book chapters.
The change process follows the plan given previously in
Figure 3, with many iterations and break/stage-gate points.

As seen in Figure 9, the sources of changes throu-
ghout the design process are numerous, and can be
emergent (i.e. arising from the properties of the system
itself), or initiated (for improvements, enhancements, or
adaptations of the system). The initiation source can be
internal (operational experience, manufacture/assembly,
production, build), or external (customer, supplier, con-
tractual), with changes in customer requirements playing
a substantial role (Table 4).

Figure 9. Sources of Change Throughout the Design

Process (Eckert et al., 2004).

Table 4. Initiation of changes. From Ahmed and Kanike
(2007).

Eckert et al. (2004) have identified two types of

change propagation: (a) Ending ones, consisting of
small ripples of change, which are brought to a conclu-
sion within an expected time frame, and (b) Unending
ones, consisting of avalanches of change, typical of “a
snowball effect,” which occur when a major change
initiates several other major changes, and all of these
cannot be brought to a satisfactory conclusion.

With innovative systems, changes are much more
likely to occur since everything is fuzzy, particularly
requirements, at the front end. This is particularly so in
hybrid systems governed by both technology push and
market pull, as in many emergent energy systems. In
theses cases, the best strategy is to isolate the innovation

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 77

process within R&D laboratories, where “organized chaos”
could be controlled and maintained, until new systems
(ideas, materials, processes, etc.) are fully developed
and successfully tested.

As noted by Jarratt et al. (2011), changes during
the design process result in "information deficiencies"
for other development teams, whose decisions are then
made about the system without up-to-date data (Fricke
et al., 2000; Rouibah and Caskey, 2003). In order to re-
medy this situation, and provide help in decision-mak-
ing, and the overall engineering change process, engi-
neers need well-designed tools for their support. Such
tools should help perform many important tasks, namely:
track requirements status; communicate with stakehol-
ders; store requirements attributes; manage versions and
changes; facilitate impact analysis; control access; reuse
requirements. Some of the academic support tools re-
ported in the literature have been discussed in detail by
Jarratt et al. (2011). A few of these will be highlighted
here.

Keller et al. (2005, 2007, 2008) developed the Change
Prediction Method (CPM) tool, which is a software pro-
gram for predicting change propagation, by analyzing
indirect changes and calculating the combined risk that a
change to one component will affect others. The CPM
tool makes use of Design Structure Matrices (DSMs) to
provide a simple, compact, and visual representation of
the probability that a change will propagate from one
component to others. The tool can be used in all life-sta-
ges of a system, such as in the conceptual design, detail
design, and operational life-stages.

In parallel, Koh and Clarkson (2009) presented a
modeling method that aims to manage the effects of
change propagation, and applied the method to the de-
sign of a jet engine fan. The method uses a matrix-based
approach to model the dependencies between the solu-
tion alternatives, the potential change propagation brou-
ght about by the solutions, the affected product attrib-
utes, and the resources needed to carry out the change
work. The method allows engineers to trace critical change
propagation paths and manage them, and hence appears
to be suitable for assessing solution alternatives during
preliminary design and exploring the design space in the
right direction.

Lemmens et al. (2007) analyzed the impact of change
from different points of view e.g. requirements, physical
or functional product architecture, design processes or
activities, organization, with the aim of facilitating deci-
sion-making by improving the visibility and shared un-
derstanding of the interdependencies that exist within and
between such viewpoints. Change Propagation Analysis
(CPA) algorithms were proposed and implemented in a
prototype software environment to allow the modeling and
visualization of multiple dependencies across multiple
information domains, including lifecycle considerations.

Tracking changes can always give an engineer
valuable experience in designing future products. How-
ever, this approach is “reactive” and only addresses the

problem of changing requirements after they have oc-
curred and it is too late to adjust the current design. De-
signing systems should be “proactive.” Designing with
“changing requirements in mind” can be especially ef-
fective when a customer has only loosely identified re-
quirements or when requirements are not fully known. A
few approaches have been proposed in that direction.

Qureshi et al. (2006) defined “product flexibility”
as the adaptability of a system in response to changing
factors. Since flexible products were realized with ad
hoc methods that rely on the experience and intuition of
the designer, they presented a set of formal principles
for guiding the design of flexible products. These prin-
ciples were derived from the results of an empirical
study of the United States patent repository. They also
validated the effectiveness of these principles using a
Change Modes and Effects Analysis (CMEA) tool.

The Design For Variety (DFV) method uses prod-
uct platform architecture to provide a structured ap-
proach to reduce the amount of redesign effort for future
generations of a product. For large projects, system ar-
chitecture can be used to break down the design into
smaller subsystems at each level of the design hierarchy
(Hintersteiner, 2000). The DFV has the advantage of
being a simple and inexpensive technique to determine
potential design changes. The methodology makes use
of standardization and modularization techniques to
reduce future design costs and efforts (Martin and Ishii,
2002). The design for variety method develops two indi-
ces to measure a product’s architecture. The first, called
the Generational Variety Index (GVI), is an indicator of
the amount of redesign effort required for future itera-
tions of a product. The other is called the Coupling In-
dex (CI), and it is used to gauge the extent of coupling
among the different components in a product. DFV can
be used to help reduce the impact of variety on the life-
cycle costs (Martin and Ishii, 2002).

Peterson et al. (2007) identified six product devel-
opment strategies to cope with changing requirements
and specifications. These strategies were tested while
developing working product prototypes for their project.
These six recommendations are:
• Establish and foster open communication between

designers and customers.
• Develop and explicitly write down a complete list of

design requirements..
• Analyze the list of requirements to identify which

requirements are likely to change and which are sta-
ble.

• Predict future market/customer needs and requirement
changes.

• Use an iterative approach. Quick turnover of designs
and prototypes provides a method for testing require-
ments and discovering unanticipated ones.

• Build flexibility into the design by selecting product
architectures that tolerate changing requirements. This
can be achieved by over-designing components that
are likely to change to meet future needs.

Eleiche, Ahmad, and Elish: Industrial Engineering & Management Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 78

 Freezing requirements is one way designers try to
deal with changing requirements. One goal of a freeze is
to reduce the likelihood of design changes. The major
benefits from using design freezes are the ability to struc-
ture the design process and to control design changes
(Eger et al., 2005). A design freeze marks the end of a
development stage where requirements become fixed
before the design can continue (Eger et al., 2005). Early
design freezes have the benefit of pushing any design
changes to future product generations. This can be con-
structive in an iterative design process. Early design
freezes can also force a design before it is beneficial to
do so. When the exact requirements are uncertain, it
may be advantageous to postpone a design freeze. Some
changes due to safety concerns, problem corrections, or
altered customer requests will still have to be carried out
regardless of whether a component is frozen. Changes
after a freeze are likely to be more costly, and the cost
will continue to increase the later the change is imple-
mented (Eger et al., 2005). Many designers feel it is best
to keep parts flexible where changes are anticipated.

Information about design freezes is especially im-
portant when working in a team. Recognizing the de-
pendencies between parts and acknowledging which
parts may be frozen can avoid inadvertent changes to the
overall design.

4.3 Discussion on RM

Some of the methods developed for software engi-
neering to assess the impact of a design change can be
applied to engineering systems with some adaptation.
As noted by Peterson et al. (2007), the difficulty lies in
that software design is only concerned with the trans-
mission of information, while engineering systems de-
sign must also deal with material and energy transfer.

A couple of models used in software engineering
consider changes in evolutionary software development
(Schach and Tomer, 2000; Rajlich, 2000). However these
models are not appropriate for engineering systems de-
sign where component interfaces are not as explicit and
involve more than just information transmission. Gener-
ally, these programs only identify the immediate impli-
cations of change within the immediate sub system and
are not capable of exploring the consequences of change
propagation through complex systems with different
mechanical interactions (Keller et al., 2005).

An important concept that should be carried over
from software to engineering systems is the adoption of
a socio-technical approach which contends that commu-
nication problems can be reduced if all stakeholders are
involved in all phases of the design process.

The idea of guessing future changes in software
(Future Analysis) can also be applied to engineering sys-
tems design. A robust design is one that can cope with
alternative futures (Land, 1982). In order to build robust
systems the designer must attempt to consider all possi-
ble alternative futures. The outcome of the analysis of

the system for future changes is a list of system features
which are likely to be affected. Building flexibility into
a system can be beneficial but is often expensive so it is
important to determine where best to build flexibility
into the system (Land, 1982). The target lifespan will
determine how much flexibility the system should have
to meet that target.

For both software and engineering systems, com-
mercial software tools are available to handle RM. Some
of these tools are compared in Table 5 and Table 6.

Table 5. RM Commercial Tools (Uspenskiy 2004)*.

TOOL
CHARACTERISTIC

DOORS RDD-100 RTM

Requirements Capture Full Full Poor
Multi-user Support Full Full Full
Concurrency Support Full Full Full
Batch Loading Full Full Moderate
Change Management Full Full Full
Version Control Moderate Moderate Full
Interface w/Other Tools Moderate Moderate Full
Multi-platform Full Full Full
Access Control Full Full Full

Note) * Dynamic Object Oriented Requirements System (DOORS)
is the product of IBM Telelogic Inc.; Requirements Dri-
ven Development-100 (RDD-100) is a product suite of
Holagent Corporation; Requirements Traceability Man-
agement (RTM) is a product of Integrated Chipware;
System Modeling Language MagicDraw +SysML is a
product of NoMagic.

Table 6. RM Commercial Tools (McLellan et al. 2010)*.

Note) * Dynamic Object Oriented Requirements System (DOORS)

is the product of IBM Telelogic Inc.; Requirements Dri-
ven Development-100 (RDD-100) is a product suite of
Holagent Corporation; Requirements Traceability Man-
agement (RTM) is a product of Integrated Chipware;
System Modeling Language MagicDraw +SysML is a
product of NoMagic.

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 79

5. CONCLUDING REMARKS

Since requirements development and management
are among the most important activities in any software
or engineering system project, efforts towards improv-
ing these two tasks can always increase and accelerate
the ROI. According to the “garbage in, garbage out” rule:
If the requirements are not “good” and “properly man-
aged,” all subsequent efforts will only help design, make,
and market the wrong unneeded product faster.

The analysis of the mentioned literature revealed
that RE in product engineering is mostly restricted to the
early phases of the development process. During the late
phase, RE does not seem to play a substantial role. Most
of these approaches state that the customer plays a cen-
tral role during the entire development process. The type
and degree of customer integration into the development
process varies. The integration of the customer into the
process of requirements elicitation is emphasized, but
not in later phases.

RE is a well-established discipline in software de-
velopment. This is clear from the many textbooks that
have appeared on the subject and the many courses in
curricula of various software engineering programs. In
contrast, there are no books dedicated to this subject for
designing engineering systems. A special journal issue
of Research in Engineering Design on “Engineering
Change” is forthcoming in 2011 (Eckert et al., 2010).

Table 7. Comparing the Degree of Achievement of Vari-

ous RD and RM Tasks in Software and Engi-
neering Systems.

STATUS*
ITEM

Software Engineering
Systems

Methods for formal specification
of requirements FC PC

Methods for requirements
elicitation are described FC FC

Tool-support is existing FC PC
Follow all phases of RD FC PC
Consider stakeholders throughout
the system lifecycle FC PC

All phases of the innovation
process are covered NC NC

RD

Hybrid systems of software and
hardware are covered NC NC

Changes of the innovation
process are covered FC FC

Commercial software tools are
available FC FC

All phases of software and
hardware are covered NC NC

RM

Hybrid systems of software and
hardware are covered NC NC

Note) * Status: FC: Fully Covered, PC: Partlally Covered,
NC: Not Covered.

Following is Table 7 compares the degree of achi-
evement of various RD and RM tasks in software and in
engineering systems.

Both software and engineering systems lack the
coverage of RD and RN in complex innovative and/or
hybrid applications.

As seen also in the Table, RD and RM are applied
in a structured way in software systems, whereas a few
areas are still under-developed for engineering systems;
further research in that direction is needed.

ACKNOWLEDGMENT

Thanks are extended to the King Fahd University
of Petroleum and Minerals for funding the research re-
ported in this paper through the KFUPM Center of Ex-
cellence for Scientific Research Collaboration with
Massachusetts Institute of Technology (MIT) (Project #
MIT 09023).

REFERENCES

Ahmed, S. and Kanike, Y. (2007), Engineering change
during a product’s lifecycle, In: Bocquet, J-C (ed)
Proceedings of the 16th international conference on
engineering design (ICED’07), Paris, France, 633-
634.

Agouridas, V., Marshall, A., Mckay, A., and Pennington,
A. D. (2006), Establishing stakeholder needs for
medical devices, ASME 2006 Int. Design Engineer-
ing Technical Conferences and Computers and In-
formation in Engineering Conference, Philadelphia,
Pennsylvania, USA.

Aurum, A. and Wohlin, C. (Editors) (2005), Engineer-
ing and Managing Software Requirements, Sprin-
ger, Heidelberg.

Blackburn, J. D., Scudder, G. D., and Van Wassenhove,
L. N. (1996), Improving Speed and Productivity of
Software Development: A Global Survey of Soft-
ware Developers, IEEE Trans. on Software Engi-
neering, 22(12), 875-885.

Bohner, S. A. (2002), Software change impacts-an evol-
ving perspective, Proc. Int. Conf. on Software Ma-
intenance, IEEE Comput. Soc, 263-272.

Bourque, P. and Dupuis, R. (2004), Guide to the Soft-
ware Engineering Body of Knowledge, IEEE Com-
puter Society.

Braude, E. (2010), Software Engineering: Modern Ap-
proaches, 2nd ed., Wiley.

CCWCE (Center for Clean Water and Clean Energy
Research) (2008), Online at: http://ccwce.mit.edu.

Cross, N. (1989), Engineering design methods, Wiley,
Chichester.

Eleiche, Ahmad, and Elish: Industrial Engineering & Management Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 80

Darlington, M. J. and Culley, S. J. (2002), Current re-
search in the engineering design requirement, Proc
Instn Mech Engrs, Part B: J Engng Manufacture,
216, 375-388.

Darlington, M. J. and Culley, S. J. (2004), A model of
factors influencing the design requirement, Design
Studies, 25(4), 329-350.

De Lucia, A., Fasano, F., and Oliveto, R. (2008), Trace-
ability management for impact analysis, Frontiers
of Software Maintenance, IEEE, 21-30.

Eckert, C. M., Clarkson, P. J., and Zanker, W. (2004),
Change and customization in complex engineering
domains, Res Eng Des, 15(1), 1-21.

Eckert, C., Clarkson, J., and de Weck, O. (2010), Call
for papers for a special issue on ‘Engineering Chan-
ge,’ Research in Engineering Design.

Eger, T., Eckert, C. M., and Clarkson, P. J. (2005), The
role of design freeze in product development: In
Samuel, A., and Lewis, W. (eds) Proc. 15th int. conf.
on engineering design (ICED’05), Melbourne, 164-
165.

Eleiche, A. M. (2010), Engineering change management
in sustainable innovative projects, APIEMS 2010:
The 11th Asia Pacific Industrial Engineering and
Management Systems Conference, and The 14th
Asia Pacific Regional Meeting of Int. Foundation
for Production Research, 501.

Fricke, E., Gebhard, B., Negele, H., and Igenbergs, E.
(2000), Coping with changes: causes, findings and
strategies. Syst Eng, 3(4), 169-179.

Gause, D. C. and Weinberg, G. M. (1989), Exploring
Requirements: Quality Before Design, Dorset House,
N. Y.

Giaglis, G. (2001), A Taxonomy of Business Process
Modeling and Information Systems Modeling Tech-
niques, Information Systems, 13, 209-228.

Harker, S. D. P., Eason, K. D. and Dobson, J. E. (1993),
The change and evolution of requirements as a chal-
lenge to the practice of software engineering, Proc.
IEEE International Symposium on Requirements
Engineering, San Diego, CA, USA.

Hintersteiner, J. D. (2000), Addressing Changing Cus-
tomer Needs by Adapting Design Requirements. In
First International Conference on Axiomatic De-
sign, ICAD2000, Cambridge, MA, 290-299.

Ibrahim, S., Idris, N. B., Munro, M., and Deraman, A.
(2005), Integrating software traceability for change
impact analysis, Int. Arab J. of Information Tech-
nology, 2(4).

IEEE-Standard-830 (1984), IEEE Guide to Software
Requirements Specifications.

IEEE (1990), IEEE Standard glossary of software engi-
neering terminology, IEEE Std. 610.

IEEE (1998), IEEE Standard 830: Recommended Prac-

tice for Software Requirements Specifications.
Imtiaz, S., Ikram, N., and Imtiaz, S. (2008), Impact an-

alysis from multiple perspectives: Evaluation of
traceability techniques, The Third International Con-
ference on Software Engineering Advances, IEEE,
457-464.

Jarratt, T. A. W., Eckert, C. M., and Clarkson, P. J. (2004),
Engineering change. In: Clarkson, P. J., and Eckert,
C. M. (eds) Design process improvement, Springer,
N. Y.

Jarratt, T. A. W., Eckert, C. M., Caldwell, N. H. M., and
Clarkson, P. J. (2011), Engineering change: an over-
view and perspective on the literature, Res Eng Des,
22, 103-124.

Jiao, J. and Chen, C.-H. (2006), Customer requirement
management in product development: A review of
research issues, Concurrent Engineering: Research
and Applications, 14(3), 1-25.

Keller, R., Eger, T., Eckert, C. M. and Clarkson, P. J.
(2005), Visualising change propagation, Int. Conf.
on Engineering Design, ICED05, Melbourne.

Keller, R., Alink, T., Pfeifer, C., Eckert, C. M., Clarkson,
P. J., and Albers, A. (2007), Product models in de-
sign: A combined use of two models to assess change
risks, International Conference on Engineering De-
sign, ICED, Cite des Sciences et de l’Industrie,
Paris, France.

Keller, R., Eckert, C. M., and Clarkson, P. J. (2008),
Through-life change prediction and management.
Proceedings International Conference on Product
Lifecycle Management, PLM-SP$, Chapter 3, 212-
221.

Koh, E. C. Y. and Clarkson, P. J. (2009), A modelling
method to manage change propagation, Int. Conf.
on Engineering Design, ICED Stanford University,
Stanford, CA, USA.

Kotonya, G. and Sommerville, I. (1998), Requirements
Engineering: Processes and Techniques, Wiley.

Kujala, S. M., Kauppinen, L., and Lehtola, K. T. (2009),
The role of user involvement in requirements qual-
ity and project success, Proc. 13th IEEE Int. Conf.
on Requirements Engineering, Paris, 75-84.

Lamsweerde, A. (2009), Requirements Engineering John
Wiley and Sons, Incorporated.

Land, F. (1982), Adapting to Changing User Require-
ments, Information and Management, 5(2), 59-75.

Larson, A. L. (2000), Sustainable innovation through an
entrepreneurship lens, Business Strategy and the
Environment, 9, 304-317.

Leffingwell, D. and Widrig, D. (2003), Managing Soft-
ware Requirements: A Use Case Approach, 2nd ed.:
Addison Wesley.

Lemmens, Y., Guenov, M., Rutka, A., Coleman, P., and
Schmidt-Schaffer, T. (2007), Methods to analyse

Design Requirements in Software and Engineering Systems
Vol 11, No 1, Mar 2012, pp.70-81, © 2012 KIIE 81

the impact of changes in complex engineering sys-
tems, 7th AIAA Aviation Technology, Integration
and Operations Conference (ATIO).

Martin, M. V. and Ishii, K. (2002), Design for variety:
developing standardized and modularized product
platform architectures, Research in Engineering De-
sign, 13, 213-235.

McLellan, J. M., Morkos, B., Mocko, G. G., and Sum-
mers, J. S. (2010), Requirement modeling systems
for mechanical design: a systematic method for
evaluating requirement management tools and lan-
guages, Proc. of IDETC/CIE 2010, ASME 2010 in-
ternational design engineering technical conferen-
ces and computers and information in engineering
conference, Montreal, Canada, Paper # DETC2010
-28989.

Mathelin, S., Boujut, J.-F., and Tollenaere, M. (2005),
Improving collaborative design tools in automotive
industry: A case study, Int. Conf. on Engineering
Design, ICED’05, Melbourne.

McGee, S. and Greer, D. (2009), A software require-
ments change source taxonomy, Fourth Int. Conf.
on Software Engineering Advances, IEEE, 51-58.

Nurmuliani, N., Zowghi, D., and Williams, S. P. (2004),
Using card sorting technique to classify requirements
change, 12th International Requirements Engineer-
ing Conference (RE).

O’Neal, J. S. and Carver, D. L. (2001), Analyzing the
impact of changing requirements, Proc. IEEE Int.
Conf. on Software Maintenance, ICSM 2001, IEEE
Comput. Soc, 190-195.

Otto, K. and Wood, K. (2001), Product design: tech-
niques in reverse engineering and new product de-
velopment, Prentice Hall, Upper Saddle River.

Pahl, G. and Beitz, W. (1996), Engineering design-a
systematic approach, 2nd edn. Springer, London.

Peterson, C., Paasch, R. K., Ge, P., and Dietterich, T. G.
(2007), Product innovation for interdisciplinary de-
sign under changing requirements, Int. conf. on en-
gineering design, ICED, Cite Des Sciences et de
l’Industrie, Paris, France.

Pressman, R. (2005), Software Engineering: A Practi-
tioner’s Approach, 6th ed.: Mc Graw Hill.

Qureshi, A., Murphy, J. T., Kuchinsky, B., Seepersad, C.
C., Wood, K. L. and Jensen, D. D. (2006), Princi-
ples of product flexibility. Proc. IDETC/CIE 2006,
ASME 2006 International Design Engineering Te-
chnical Conferences and Computers and Informa-
tion in Engineering Conference, Philadelphia, Pen-
nsylvania, USA.

Rajlich, V. (2000), Modelling software evolution by
evolving interoperation graphs, Ann Softw Eng, 9,
235-248.

Ramzan, S. and Ikram, N. (2005), Making decision in

requirement change management, Proc. Int. Conf.
on Information and Communication Technologies,
IEEE, 309-312.

Ramzan, S. and Ikram, N. (2006), Requirement change
management process models: activities, artifacts and
roles, Proc. IEEE Int. Multitopic Conf., IEEE, 219-
223.

Ross, A. M., Rhodes, D. H., and Hastings, D. E. (2008),
Defining changeability: Reconciling flexibility, ada-
ptability, scalability, modifiability, and robustness
for maintaining system lifecycle value, Systems En-
gineering, 11, 246-262.

Rouibah, K. and Caskey, K. R. (2003), Change man-
agement in concurrent engineering from a parame-
ter perspective, Comput Ind, 50(1), 15-34.

Schach, S. R. and Tomer, A. (2000), A maintenance-
orientated approach to software construction, J Softw
Maint-Res Pract, 12(1), 25-45.

SERENA (2011), RTM product overview. Accessed at:
www.sciti.com.ar/productos/pdf_serena/RTM%20o
verview.pdf, on 3 May 2011.

Sommerville, I. (2007), Software Engineering, 8th ed.:
Addison-Wesley.

Standish Group Report (1995), ‘CHAOS,’ http://www.
projectsmart.co.uk/docs/chaos_report.pdf, Accessed
on 1 May 2011.

Strens, M. R. and Sugden, R. C. (1996), Change analy-
sis: a step towards meeting the challenge of chang-
ing requirements, Proc. IEEE Symposium and Work-
shop on Engineering of Computer-Based Systems,
IEEE Comput. Soc. Press, 278-283.

Tavassoli, D. (2009), Ten steps to better requirements
management, IBM white paper. Accessed on 3 May
2011 at: ftp://ftp.boulder.ibm.com/software/uk/pdf/
RAW14059-USEN-00-1.pdf.

Ullman, D. G. (2010), The mechanical design process,
4th edn, McGraw-Hill Education, Boston.

Ulrich, K. T. and Eppinger, S. D. (2008), Product de-
sign and development, 4th edn. McGraw-Hill HE,
Boston.

Uspenskiy, D. (2004), Requirements management (RM)
tools.

Verganti, R. (1997), Leveraging on systematic learning
to manage the early phases of product innovation
projects, R&D Management, 27, 377-392

Ward, J., Shefelbine, S., and Clarkson, P. J. (2003), Re-
quirements capture for medical device design. Int.
Conf. on Engineering Design, ICED’03, Stockholm.

Wiegers, K. E. (2000), When telepathy won’t do: Re-
quirements engineering key practices, Cutter IT
Journal, May 2000, www.processimpact.com/arti-
cles/telepathy.html.

Wiegers, K. E. (2003), Software requirements, 2nd ed.
Microsoft Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

