DOI QR코드

DOI QR Code

A Study on the Optimization of the Natural Frequency of a Ring-Stiffened Cylindrical Shell

링 보강 원통셸의 고유진동수 최적화에 관한 연구

  • Received : 2011.10.05
  • Accepted : 2011.12.26
  • Published : 2012.03.01

Abstract

For the optimization of the fundamental natural frequency of stiffened cylindrical shells, simulations were performed for cylindrical shells that were stiffened with between one and five ring stiffeners. ANSYS 11.0 was used to simulate the optimization for the natural frequency. The Subproblem Approximation Method was applied as the optimization method. The design function of the optimization was the geometry of the T-shaped ring stiffener, and the constraint function was the maximum additional volume, constrained to a 10% increase. The objective function of the optimization was chosen to maximize the fundamental natural frequency. The performance index for optimal design was defined as the ratio of the natural frequency to the volume of the unstiffened and stiffened shells. The optimal performance index was obtained for the shell stiffened with three rings.

보강 원통셸의 기본 고유 진동수를 최적화하기 위해서, 보강재의 개수를 1 개에서 5 개까지 보강된 원통셸에 대한 시뮬레이션을 수행하였다. 고유 진동수에 대한 최적화를 시뮬레이션하기 위해서 ANSYS 11.0 을 사용하였다. 최적화 방법으로 Subproblem Approximation Method 를 이용하였다. 최적화의 설계 함수로는 T-형 링 보강재의 기하형상이며, 제한 함수로는 보강에 따른 추가 부피가 10 % 이내로 제한하였다. 목적함수는 기본 고유진동수를 최대화하는 것이다. 최적 설계에 대한 성능 지표는 비보강 원통셸과 보강원통셸의 고유진동수와 부피의 비로서 정의하였다. 최적 성능 지수는 3 개의 보강재를 사용한 원통셸에서 나타났다.

Keywords

References

  1. Lee, Y. S., 2009, "Review on the Cylindrical Shell Research," Transactions of the KSME A, Vol. 33, No. 1, pp. 1-26 https://doi.org/10.3795/KSME-A.2009.33.1.1
  2. Lee, Y. S., Yang, M. S., Kim, H. S. and Kim, J. H., 2002, "A Study on the Free Vibration of the Joined Cylindrical- Spherical Shell Structures," Computers & Structures, Vol. 80, No.27-30, pp. 2405-2414. https://doi.org/10.1016/S0045-7949(02)00243-2
  3. Ludwig A. and Krieg R., 1977, "Dynamic Response of a Clamped/Ring Stiffened Circular Cylindrical Shell under Non-Axisymmetric Loading," Nuclear Engineering and Design, Vol. 43, No. 2, pp. 437-453. https://doi.org/10.1016/0029-5493(77)90017-6
  4. Lee, Y. S. and Kim, Y. W., 1998, "Vibration Analysis of the Rotating Composite Cylindrical Shells with Orthogonal Stiffeners," Computers & Structures, Vol. 69, No. 2, pp. 271-281 https://doi.org/10.1016/S0045-7949(97)00047-3
  5. Wang, R. T. and Lin, Z. X., 2006, "Vibration Analysis of Ring-stiffened Cross-ply Laminated Cylindrical Shells," Journal of Sound and Vibration, Vol. 295, No. 3-5, pp. 964-987. https://doi.org/10.1016/j.jsv.2006.01.061
  6. Pan, Z., Li, X. and Ma, J., 2008, "A Study on Free Vibration of a Ring-stiffened Thin Circular Cylindrical Shell with Arbitrary Boundary Conditions," Journal of Sound and Vibration, Vol. 314, pp. 330-342. https://doi.org/10.1016/j.jsv.2008.01.008
  7. Lee, Y. S. and Kim, D. W., 1989, "A Study on the Optimization of the Stiffened Cylindrical Shell," Transactions of the KSME A, Vol. 13, No. 2, pp. 205-212.
  8. Lee, Y.S., Ryu, C.H., Myung, C.M., 2001, "A Study on the Ranked Bidirectional Evolutionary Structural Optimization," Transactions of the KSME A, Vol. 25, No. 9, pp.1444-1451
  9. Lee, J.H., Lee, Y.S., Lee, Y.H., Lim, H.K. and Lee, S.J., 2010, "A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System," Transactions of the KSME A, Vol. 34, No. 2, pp.153-160 https://doi.org/10.3795/KSME-A.2010.34.2.153
  10. Jafari, A. A. and Bagheri, 2006, "Free Vibration of Non- Uniformly Ring Stiffened Cylindrical Shells using Analytical, Experimental and Numerical Methods," Thin - Walled Structures, Vol.44, pp.82-90. https://doi.org/10.1016/j.tws.2005.08.008
  11. SASI, 1992, "ANSYS Uses Manual," Swanson Analysis System Inc., Houston, Vol. 3.