Synthesis of SnO2 nanowires on one-dimensional carbonization cotton fabric

  • Khai, Tran Van (Department of Materials Science and Engineering, Hanyang University) ;
  • Shim, Kwang-Bo (Department of Materials Science and Engineering, Hanyang University)
  • Received : 2011.11.29
  • Accepted : 2012.01.27
  • Published : 2012.02.29


Tin-oxide ($SnO_2$) nanowires have been synthesized on one-dimensional (1D) carbonization cotton fabric using chemical vapour deposition method. One-dimensional (1D) carbonization cotton fabric has been synthesized from cotton fabric using annealing process in nitrogen gas at $1000^{\circ}C$. The $SnO_2$ nanowires are single-crystalline rutile structures with 20 nm in diameter and 10 ${\mu}m$ in length. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and photoluminescence (PL) spectroscopy were utilized to characterize the as-synthesized products.


  1. C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass and H. Schmidt, "Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline $SnO_{2}$ : Sb particles", J. Mater. Chem. 9 (1999) 253
  2. S. Mathur, S. Barth, H. Shen, J.C. Pyun and U. Werner, "Size-dependent photoconductance in $SnO_{2}$ nanowires", Small 1 (2005) 713.
  3. Z.Q. Liu, D.H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X.L. Liu, B. Lei and C.W. Zhou, "Laser ablation synthesis and electron transport studies of tin oxide nanowires", Adv. Mater. 15 (2003) 1754.
  4. E.N. Dattoli, Q. Wan, W. Guo, Y.B. Chen, X.Q. Pan and W. Lu, "Fully transparent thin-film transistor devices based on $SnO_{2}$ nanowires", Nano Lett. 7 (2007) 2463.
  5. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, "Tin-based amorphous oxide: A high-capacity lithium-ion-storage material", Science 276 (1997) 1395.
  6. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou and H.K. Liu, "Preparation and electrochemical properties of $SnO_{2}$ nanowires for application in lithiumion batteries", Angew. Chem. Int. Edn. 46 (2007) 750.
  7. S. Ferrere, A. Zaban and B.A. Gregg, "Dye sensitization of nanocrystalline tin oxide by perylene derivatives", J. Phys. Chem. B 101 (1997) 4490.
  8. Q.Y. Pan, J.Q. Xu, X.W. Dong and J.P. Zhang, "Gassensitive properties of nanometer-sized $SnO_{2}$", Sensors Actuators B 66 (2000) 237.
  9. Q. Dong, H.L. Su, J.Q. Xu and D. Zhang, "Influence of hierarchical nanostructures to the gas sensing properties of $SnO_{2}$ biomorphic films", Sensors Actuators B 123 (2007) 420.
  10. F. Li, J.Q. Xu, X.H. Yu, L.Y. Chen, J.M. Zhu, Z.R. Yang and X.Q. Xin, "One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles", Sensors Actuators B 81 (2002) 165.
  11. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts", Appl. Phys. Lett. 81 (2002) 1869.
  12. Y.L. Wang, X.C. Jiang and Y.N. Xia, "A solution-phase, precursor route to polycrystalline $SnO_{2}$ nanowires that can be used for gas sensing under ambient conditions", J. Am. Chem. Soc. 125 (2003) 16176.
  13. X.C. Jiang, Y.L. Wang, T. Herricks and Y.N. Xia, "Ethylene glycol-mediated synthesis of metal oxide nanowires", J. Mater. Chem. 14 (2004) 695.
  14. H.T. Shi, L.M. Qi, J.M. Ma and H.M. Cheng, "Polymerdirected synthesis of penniform BaWO4 nanostructures in reverse micelles", J. Am. Chem. Soc. 125 (2003) 3450.
  15. Z.P. Zhang, X.Q. Shao, H.D. Yu, Y.B. Wang and M.Y. Han, "Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures", Chem. Mater. 17 (2005) 332.
  16. F. Li, J.B. He, L.L. Zhou and J.B. Wiley, "Synthesis of porous wires from directed assemblies of nanospheres", J. Am. Chem. Soc. 125 (2003) 16166.
  17. Z.L. Wang and Z.W. Pan, "Junctions and networks of. SnO nanoribbons", Adv. Mater. 14 (2002) 1029.<1029::AID-ADMA1029>3.0.CO;2-3