DOI QR코드

DOI QR Code

동시 증착 스퍼터링 공정에 의해 증착된 Pd-barium zirconate membrane의 구조분석

Structural properties of Pd-barium zirconate dense membrane synthesized by dual sputtering method

  • Byeon, Myeong-Seop (School of Nano & Advanced Materials Engineering, Gyeongsang National University) ;
  • Kang, Eun-Tae (School of Nano & Advanced Materials Engineering, Gyeongsang National University) ;
  • Cho, Woo-Seok (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2011.11.02
  • 심사 : 2011.12.23
  • 발행 : 2012.02.29

초록

Barium zirconate는 화학적 안정성이 우수하고 고온에서의 프로톤 전도성이 뛰어나지만, 프로톤 전도도에 비해 전자전도도가 현저히 떨어진다. 따라서 본 연구에서는 높은 수소 분리 특성을 위해 다공성 지지체 상에 Pd-Barium zirconate를 얇고 치밀한 박막으로 제조하고자 하였고, dual sputtering법을 이용하여 성공적으로 증착하였다. X-선 회절 분석을 통해 증착된 $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ 박막은 300 이상에서부터 $BaZrO_3$(Pm-3m) 결정상으로 결정화됨을 확인할 수 있었으며 표면과 단면에 대한 구조적 형상은 SEM과 TEM을 통해 관찰하였다. 관찰 결과 증착된 분리막은 치밀하였고 부채꼴의 주상으로 결정이 성장함을 확인할 수 있었다.

Barium zirconate exhibits good thermo-chemical stability and proton conduction at high temperatures, but shows poor electron conductivity. Therefore, for high efficiency of hydrogen separation, a very thin and dense Pd-Barium zirconate membrane has to be coated on a porous substrate. A thin and dense Pd-Barium zirconate membrane was successfully synthesized on a porous substrate by means of dual sputtering method. The structural and chemical features of the $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membranes sputtered at $300^{\circ}C$ and $400^{\circ}C$ were investigated by X-ray diffractometry, and it was found that a well-crystallized membrane, Pm-3m space group of $BaZrO_3$, was synthesized. The surface and cross-sectional morphologies of membrane were assessed by SEM (scanning electron microscopy) and TEM(transmission electron microscopy) of the surface and of cross sections. The cross sectional observation of Pd-$BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membrane by dual sputtering shows that the coating is quite dense with columnar structure.

키워드

참고문헌

  1. H. Iwahara, "Technological challenges in the application of proton conducting ceramics", Solid State Ionics 77 (1995) 289. https://doi.org/10.1016/0167-2738(95)00051-7
  2. W.G. Coors, "Protonic ceramic fuel cells for high-efficiency operation with methane", J. Pow. Sour. 118 (2003) 150. https://doi.org/10.1016/S0378-7753(03)00072-7
  3. G. Zhang, S.E. Dorris, U. Balachandran and M. Liu, "Interfacial resistances of Ni-BCY mixed-conducting membranes for hydrogen separation", Solid State Ionics 159 (2003) 121. https://doi.org/10.1016/S0167-2738(02)00871-8
  4. Z. Zhong, "Stability and conductivity study of the $BaCe_{0.9-X}Zr_{X}Y_{0.1}O_{2.95}$ systems", Solid State Ionics 178 (2007) 213. https://doi.org/10.1016/j.ssi.2006.12.007
  5. F. Iguchi, N. Sata, T. Takao and H. Yugami, "Microstructures and grain boundary conductivity of $BaZr_{1-X}Y_{X}O_{3}$ (X = 0.05, 0.10, 0.15) ceramics", Solid State Ionics 178(7-10) (2007) 691. https://doi.org/10.1016/j.ssi.2007.02.019
  6. K. Katahira, Y. Kohchi, T. Shimura and H. Iwahara, "Protonic conduction in Zr-substituted $BaCeO_{3}$", Solid State Ionics 138(1-2) (2000) 91. https://doi.org/10.1016/S0167-2738(00)00777-3
  7. D.H. Kim, Y.C. Jeong, J.S. Park, B.K. Kim and Y.C. Kim "Transfer of Oxygen Vacancy and Proton in Ydoped $BaZrO_{3}$", J. Kor. Ceram. Soc. 46(6) (2009) 695. https://doi.org/10.4191/KCERS.2009.46.6.695
  8. K.D. Kreuer, "Proton-conducting oxides", Annu. Rev. Mater. Res. 33 (2003) 333. https://doi.org/10.1146/annurev.matsci.33.022802.091825
  9. M.A.P. Yazdi, P. Briois, S. Georges and A. Billard, "Electrical and structural investigations of perovskite structure reactively sputter deposited coatings", Solid State Ionics 180 (2009) 1246. https://doi.org/10.1016/j.ssi.2009.07.008
  10. H. Limage, F.D. Tichelaar, R. Closset, S. Delvaux, R. Cloots and S. Lucas, "Study of the effect of a silver nanoparticle seeding layer on the crystallisation temperature, photoinduced hydrophylic and catalytic properties of $TiO_{2}$ thin films deposited on glass by magnetron sputtering", Surf. Coat. Tech. 205(13-14) (2011) 3774. https://doi.org/10.1016/j.surfcoat.2011.01.022
  11. R. Thomas, S. Mochizuki, T. Mihara and T. Ishida, "Effect of substrate temperature on the crystallization of $Pb(Zr,Ti)O_{3}$ films on Pt/Ti/Si substrates prepared by radio frequency magnetron sputtering with a stoichiometric oxide target", Mat. Sci. Eng., B 95(1) (2002) 36. https://doi.org/10.1016/S0921-5107(02)00161-7
  12. I. Levin, T.G. Amos, S.M. Bell, L. Farber, T.A. Vanderah, R.S. Roth and B.H. Toby, "Phase equilibria, crystal structures, and dielectric anomaly in the $BaZrO_{3}-CaZrO_{3}$ system", J. Solid State Chem. 175(2) (2003) 170. https://doi.org/10.1016/S0022-4596(03)00220-2
  13. Y. Kuru, M. Wohlschlogel, U. Welzel and E.J. Mittemeijer, "Coefficients of thermal expansion of thin metal films investigated by non-ambient X-ray diffraction stress analysis", Surf. Coat. Tech. 202 (2008) 2306. https://doi.org/10.1016/j.surfcoat.2007.08.002
  14. W. Chen, X. Hu, R. Wang and Y. Huang, "On the assembling of Pd/ceramic composite membranes for hydrogen separation", Sep. Puri. Tech. 72 (2010) 92. https://doi.org/10.1016/j.seppur.2010.01.010
  15. S.K. Ryi, J.S. Parka, S.H. Kim, D.W. Kim and K.I. Cho, "Formation of a defect-free Pd-Cu-Ni ternary alloy membrane on a polished porous nickel support (PNS)", J. Memb. Sci. 318(1-2) (2008) 346. https://doi.org/10.1016/j.memsci.2008.02.055
  16. J. O'Brien, R. Hughes and J. Hisek, "Pd/Ag membranes on porous alumina substrates by unbalanced magnetron sputtering", Surf. Coat. Tech. 142-144 (2001) 253. https://doi.org/10.1016/S0257-8972(01)01198-7