References
- Aoki, I. and T. Komatsu, 1992. Neuro-computing for Forecasting the Catch of Young Sardine. Bull. Japan. Soc. Fish. Oceanogr., 56 (2), 113-120.
- Aoki, I., T. Komatsu and K. Hwang, 1999. Prediction of response of zooplankton biomass to climatic and oceanic change. Ecological Modelling, 120 (2-3), 261-270. https://doi.org/10.1016/S0304-3800(99)00107-6
- Asoh, H., 1989. Mathematical Properties of Neural Networks. Jr. Japan. Soc. Artificial Intelligence, 4 (2), 128-133.
- Charef, A., S. Ohshimo, I. Aoki and N.A. Absi, 2010. Classification of fish schools based on evaluation of acoustic descriptor characteristics. Fish. Sci. 76 (1), 1-11. https://doi.org/10.1007/s12562-009-0186-x
- Czerwinski, I.A., J.C. Gutierrez-Estrada and J.A. Hernando-Casal (2007) Short-term forecasting of halibut CPUE: Linear and non-linear univariate approaches. Fish. Res. 86 (2-3), 120-128. https://doi.org/10.1016/j.fishres.2007.05.006
- Esmaeili, A. and M.H. Tarazkar, 2010. Prediction of shrimp growth using an artificial neural network and regression models. Aquacult Int. 19 (4), 705-713
- Fantin-Cruz, I., O. Pedrollo, C.C. Bonecker, D. Motta- Marques and S. Loverde-Oliveira, 2010. Zooplankton Density Prediction in a Flood Lake (Pantanal -Brazil) Using Artificial Neural Networks. Internat. Rev. Hydrobiol. 95 (4-5), 330-342.
- Hauser-Davis, R.A., T.F. Oliveira, A.M. Silveira, T.B. Silva and R.L. Ziolli, 2010. Case study: Comparing the use of nonlinear discriminating analysis and Artificial Neural Networks in the classification of three fish species: acaras (Geophagus brasiliensis), tilapias (Tilapia rendalli) and mullets (Mugil liza). Ecological Inforamtics 5 (6), 474-478. https://doi.org/10.1016/j.ecoinf.2010.08.002
- Hunabashi M., 1992. Introduction for neuro-computing, Ohmsha, Tokyo, pp. 152.
- Hwang, K. and I. Aoki, 1997. An approach to neurocomputing for the forecast of the catches of multiple species in the set net of Seishyo region, western Sagami Bay. Nippon Suisan Gakkaishi, 63 (2), 549 -556. https://doi.org/10.2331/suisan.63.549
- Hwang, K., I. Aoki, T. Komatsu, H. Ishizaki, I. Shibata, 1996, Forecasting for the catch of jack mackerel in the Komekami set net by a neural network. Bull. Japan. Soc. Fish. Oceanogr., 60 (2), 136-142.
- Jang J.-S.R., C.-T. Sun and E. Mizutani, 1997. Neurofuzzy and soft computing: a cmoputational approach to learning and machine intelligence. Prentice-Hall, New Jersey, pp. 614.
- Kim D. S., 1993. Theory and application of neural network. Hightech-info, Seoul, pp. 387.
- Lin C.T. and C.S.G. Lee, 1995. Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice-Hall, New Jersey, pp. 797.
- Matsuba H., 1993. Information processing by neural system. Shokoutou, Tokyo, pp. 191.
- Robotham, H., P. Bosch, J.C. Gutiérrez-Estrada, J. Castillo and I. Pulido-Calvo, 2010. Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fish. Res. 102 (1-2), 115-122. https://doi.org/10.1016/j.fishres.2009.10.015
- Simpson, P. K., 1990. Artificial Neural Systems, Pergamon Press, New York, pp. 209.
- Smith, M., 1996. Neural Networks for Statistical Modeling, Internationa Thompson computer press, Boston, pp. 235.
- Yanez E., F. Plaza, J.C. Gutierrez-Estrada, N. Rodrrguez, M.A. Barbieri, I. Pulido-Calvo and C. Borquez, 2010. Anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance forecast off northern Chile: A multivariate ecosystemic neural network approach. Progress in Oceanography 87 (1-4), 242 -250. https://doi.org/10.1016/j.pocean.2010.09.015
- Yoo S. and C. Zhang, 1993. Forecasting of hairtail (Trichiurus lepturus) landings in Korean waters by times series analysis. Bull. Kor. Fish. Soc., 26 (4), 363-368.
Cited by
- Quality Properties and Processing Optimization of Mackerel (Scomber japonicus) Sausage vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1656