References
- Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: The LMS method and penalized likelihood, Statistics in Medicine, 11, 1305-1319. https://doi.org/10.1002/sim.4780111005
- Copas, J. B. (1995). Local likelihood based on kernel censoring, Journal of the Royal Statistical Society, Series B, 57, 221-235.
- Hall, P. and Presnell, B. (1997). Intentionally Biased Bootstrap Methods, unpublished manuscript.
- Hall, P., Wolff, R. C. and Yao, Q. (1999). Methods for estimating a conditional distribution, Journal of the American Statistical Association, 94, 154-163. https://doi.org/10.2307/2669691
- Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children, Journal of the Royal Statistical Society (Applied Statistics), 48, 533-551. https://doi.org/10.1111/1467-9876.00170
- Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. https://doi.org/10.2307/2290452
- Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation, Annals of Statistics, 24, 1619-1647. https://doi.org/10.1214/aos/1032298288
- Koenker, R. (2005). Quantile Regression, Cambridge, U.K., Cambridge University Press.
- Koenker, R. and Bassett, G. (1978). Asymptotic theory of least absolute error regression, Journal of the American Statistical Association, 73, 618-622. https://doi.org/10.1080/01621459.1978.10480065
- Koenker, R. and Hallock, K. F. (2001). Quantile regression, The Journal of Economic Perspectives, 15, 143-156. https://doi.org/10.1257/jep.15.4.143
- Loader, C. R. (1996). Local likelihood density estimation, Annals of Statistics, 24, 1602-1618. https://doi.org/10.1214/aos/1032298287
- Portnoy, S. and Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: Computability of squared-error versus absolute-error estimators (with discussion), Statistical Science, 12, 279-300. https://doi.org/10.1214/ss/1030037960
- R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257-1270. https://doi.org/10.2307/2291516
- Yu, K. and Jones, M. C. (1998). Local linear regression quantile estimation, Journal of the American Statistical Association, 93, 228-238. https://doi.org/10.2307/2669619
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research areas, Journal of the Royal Statistical Society, 52, 331-350.