DOI QR코드

DOI QR Code

집단 약동학 모형을 위한 모형 진단과 적합도 검정에 대한 고찰

Model Validation Methods of Population Pharmacokinetic Models

  • 투고 : 2011.10.07
  • 심사 : 2012.01.31
  • 발행 : 2012.02.29

초록

집단 약동학 모형 추정의 결과는 환자에게 투약학 약물의 용량결정에 직접적 영향을 미치므로 추정 모형에 대한 타당도와 적합도의 검증이 중요하다. 본 논문에서는 다양한 집단 약동학 모형 적합도 검증을 위한 방법들을 비교, 분석하고 실제 임상자료를 이용하여 최적의 집단 약동학 모형을 찾고 이에 대하여 다양한 타당도, 적합도 검정을 실시하여 모형을 진단해 본다.

The result of the analysis of a population pharmacokinetic model can directly influence the decision of the dose level applied to the targeted patients. Therefore the validation procedure of the final model is very important in this area. This paper reviews the validation methods of population pharmacokinetic models from a statistical viewpoint. In addition, the whole procedure of the analysis of population pharmacokinetics, from the base model to the final model (that includes various validation procedures for the final model) is tested with real clinical data.

키워드

참고문헌

  1. 이은경 (2010). 집단 약동학 모형에 대한 통계학적 고찰, <응용통계연구>, 23, 511-520.
  2. Brendel, K., Dartois, C., Comets, E., Lemenuel-Diot, A., Laveille, C., Tranchand, B., Girard, P., Laffont, C. M. and Mentre, F. (2007). Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004, Clinical Pharmacokinetics, 46, 221-234. https://doi.org/10.2165/00003088-200746030-00003
  3. Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy, Statistical Science, 1, 54-77. https://doi.org/10.1214/ss/1177013815
  4. Ette, E. I. (1997). Stability and performance of a population pharmacokinetic model, Journal of Clinical Pharmacology, 37, 486-495. https://doi.org/10.1002/j.1552-4604.1997.tb04326.x
  5. Ette, E. I. (1998). Statistical graphics in pharmacokinetics and pharmacodynamics: A tutorial, The Annals of Pharmacotherapy, 32, 818-828. https://doi.org/10.1345/aph.17304
  6. Ette, E. I., Williams, P. J., Kim, Y. H., Lane, J. R., Liu, M. J. and Capparelli, E. V. (2003). Model approximateness and population pharmacokinetic modeling, Journal of Clinical Pharmacology, 43, 610-623. https://doi.org/10.1177/0091270003253624
  7. Holford, N. (2005). The visual predictive check-superiority to standard diagnostic(Rorschach) plots [abstr 738] PAGE, http://www.page-meeting.org/?abstract=738.
  8. Holford, N. (2008). Model Evaluation = Visual predictive checks [abstr 1434] PAGE, http://www.pagemeeting.org/?abstract=1434.
  9. Holford, N. G. G. and Peace, K. E. (1992). Results and validation of a population pharmacodynamic models for cognitive effects in Alzheimer patients treated with tacrine, Proceedings of the National Academy of Sciences, 89, 11471-11475. https://doi.org/10.1073/pnas.89.23.11471
  10. Jonsson, E. N. and Karlsson, M. O. (1999). Xpose - an S-plus based population pharmacokinetic/pharmacodynamic model building aid for NONMEM, Computer Methods and Programs in Biomedicine, 58, 51-64. https://doi.org/10.1016/S0169-2607(98)00067-4
  11. Karlsson, M. O. and Savic, R. M. (2007). Diagnosing model diagnostics, Clinical Pharmacology and Thera- peutics, 82, 17-20. https://doi.org/10.1038/sj.clpt.6100241
  12. Kowalski, K. G. and Hutmacher, M. M. (2001). Efficient screening of covariates in population models using Wald's approximation to the likelihood ratio test, Journal of Pharmacokinetics and Pharmacodynam- ics, 28, 253-275. https://doi.org/10.1023/A:1011579109640
  13. Lee, E., Lee, S., Park, D., Ki, K., Lee, E., Lee, D. and Noh, G. (2008). Physicochemical properties, pharmacomikinetics, and pharmacodynamics of a reformulated microemulsion propofol in rats, Anesthesiology, 109, 436-447. https://doi.org/10.1097/ALN.0b013e318182a486
  14. Liddle, A. R. (2007). Information criteria for astrophysical model selection, Montly Notices of the Royal Astronomical Society: Letters, 377, L74-L78. https://doi.org/10.1111/j.1745-3933.2007.00306.x
  15. Lindbom, L. (2006). Development, application and evaluation of statistical tools in pharmacometric data analysis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 33, 46.
  16. Parke, J., Holford, N. H. G. and Charles, B. G. (1999). A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models, Computer Methods and Programs in Biomedicine, 59, 19-29. https://doi.org/10.1016/S0169-2607(98)00098-4
  17. Post, T. M., Freijer, J. I., Ploeger, B. A. and Danhof, M. (2008). Extensions to the visual predictive check to facilitate model performance evaluation, Journal of Pharmacokinetics and Pharmacodynamics, 35, 185-202. https://doi.org/10.1007/s10928-007-9081-1
  18. Sadray, S., Jonsson, E. N. and Karlsson, M. O. (1999). Likelihood-based diagnostics for influential individuals in non-linear mixed effects model selection, Pharmaceutical Research, 16, 1260-1265. https://doi.org/10.1023/A:1014857832337
  19. Savic, R., Wilkins, J. J. and Karlsson, M. O. (2006). (Un)informativeness of empirical Bayes estimate based diagnostics [abstr T3360] AAPS Journal, 8(S2).
  20. Sheiner, L. B. (1986). Analysis of pharmacokinetic data using parametric models. III. Hypothesis tests and confidence intervals, Journal of Pharmacokinetics and Biopharmaceutics, 14, 539-555. https://doi.org/10.1007/BF01059660
  21. US FDA (1999). Guidance for Industry - Population Pharmacokinetics.
  22. Yafune, A. and Ishiguro, M. (1999). Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error, Statistics in Medicine, 18, 581-599. https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<581::AID-SIM47>3.0.CO;2-1
  23. Yano, Y., Beal, S. L. and Sheiner, L. B. (2001). Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check, Journal of Pharmacokinetics and Pharmacodynamics, 28, 171-192. https://doi.org/10.1023/A:1011555016423