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Climate change and fluctuations of pelagic fish populations in 
the Far East region
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Abstract
Time series of ocean climate indices and catch records were used to identify the alternation patterns of pelagic fish popu-

lations in relation to climate regime shifts. During 1910-2008, an orderly alternation of dominant pelagic fish groups was 

observed in the Tsushima Warm Current (TWC; Yellow Sea-East China Sea-East Sea/Japan Sea) and Kuroshio-Oyashio 

Current (KOC; Northwestern Pacific) regions. After the collapse of herring fishery in the late 1920s, the sardine (A group) 

dominated in the 1930s, 3 other species (C group; Pacific saury, jack mackerel, and anchovy) dominated in the 1950s-

1960s, chub mackerel (B group) dominated in the 1970s, and then sardine (A group) dominated again during cool regime 

in the 1980s. As sardine biomass decreased in association with the climate regime shift that occurred in the late 1980s, 

catches of C group immediately increased after the regime shift and remained at high levels during warm regime in the 

1990s. Alternations of dominant fish groups occurred 6 times between 1910 and 2008. The dominant period of the 7 spe-

cies lasted for 10-20 years. The catch of Pacific sardine in the TWC and KOC regions showed a negative correlation with 

the catch of the other 5 species (Pacific herring, anchovy, jack mackerel, Pacific saury, and common squid), suggesting 

that the abundance of the 5 species is strongly affected by the abundance of Pacific sardine in relation to the climate 

regime shifts. The total catch level of the 7 species in the KOC region was generally higher than that in the TWC region 

before 1991 but was lower after 1992, suggesting that the fish populations in the Pacific side are shifted to the TWC region 

by zonal oscillation of the oceanic conditions in relation to the climate regime shift in the late 1980s. 
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INTRODUCTION

Growing evidence suggests that abrupt environmen-

tal regime changes can influence pelagic fish production 

(Lluch-Belda et al. 1989, Beamish 1995, Hare and Mantua 

2000, Yatsu et al. 2005, Tian et al. 2008). Sardine landings 

show synchronous variations in the northwestern, north-

eastern, and southeastern Pacific (Kawasaki 1983). The 

discovery of these biological regime shifts preceded the 

description of the underlying physical variability. Fluctua-

tions in air temperature, ocean temperature, atmospheric 

circulation, and carbon dioxide were remarkably similar 

in phase and duration to the biological records (Chavez et 

al. 2003). As a result, it has been suggested that a regime 

or climatic shift may be best determined by monitoring 

marine organisms rather than climate (Hare and Mantua 

2000). It is also suggested that the ocean conditions were 

warmer than normal at the upper layers in the Tsushima 

Warm Current (TWC) region in the 1990s (Gong et al. 

2008, 2010, Tian et al. 2008). Pacific sardine, file fish, and 

walleye pollock disappeared from the TWC region after 

the climate regime shift in the late 1980s.
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East Sea/Japan Sea) and KOC (Northwest Pacific includ-

ing the Okhotsk Sea and Seto Inland) regions. Since the 

range of the pelagic fish populations is quite large, fishing 

records from all fishing countries in the Far East (FAO area 

61; north of 20° N, west of 175° W) were included to exam-

ine the long-term trend in abundance of the fish popula-

tions across the entire distribution range. 

The historical catch data for the period 1910-2008 are 

based on the Yearbook of Fishery Statistics of Korea and 

Japan, FAO Yearbook of Fisheries Statistics, and previous re-

ports including fishery data (Chikuni 1985, Schwartzlose 

et al. 1999, Klyashtorin 2001, Gong et al. 2007). 

Although catch alone is acknowledged to be a crude 

measure of abundance, direct surveys have only recently 

started in most systems, so there are no comparative indi-

ces for periods of high and low abundance of the pelagic 

fish populations. Nevertheless, the changes in catches 

The abrupt changes in the fish community in the East 

Sea (Japan Sea) that occurred in the mid-1970s and late 

1980s seemed to closely correspond with the climate re-

gime shifts in the North Pacific (Tian et al. 2006). A fishery 

regime is defined as a decadal-scale period of high or low 

abundance of fish populations. Both the marine ecosys-

tem as the fish population habitat and the production 

system as the bottom level of the food web shifted in the 

mid-1970s and the late 1980s in the North Pacific and its 

adjacent regions.

Fluctuation of fish population abundance may result 

from environmental fluctuation, density-dependent re-

production rate, or interspecific interactions. The alterna-

tion of dominant pelagic fish species in the waters off of 

Japan are well documented (Nakahara and Ogawa 1979, 

Matsuda et al. 1991, 1992, Kawasaki 1992, Watabe 1992a, 

1992b, Schwartzlose et al. 1999, Yatsu et al. 2005). It was 

noticed that the year-to-year catch of some pelagic fish 

populations (e.g., chub mackerel) in the Kuroshio-Oyas-

hio Current (KOC) region showed a different pattern than 

the catch in the TWC region after the climate regime shift 

in the late 1980s (Gong et al. 2008, 2010). The replace-

ment patterns in relation to climate change in the waters 

around the Korean peninsula (TWC region) have not been 

fully explained compared with the patterns in the KOC re-

gion due to the limited specific regional catch data.  

This study investigates the temporal correspondence 

between the main patterns of abundance fluctuation 

among Far East exploited pelagic fish populations and 

large scale climate and temperature indices.

MATERIALS AND METHODS

The Arctic Oscillation Index (AOI), Aleutian Low Pres-

sure Index (ALPI), and Monsoon Index (MOI) were chosen 

as climatic indices for the Far East region (Fig. 1). A time se-

ries of winter (Jan, Feb, Mar; JFM) sea surface temperature 

(SST) anomalies in the TWC and KOC regions for the period 

of 1900-2010 (Fig. 2) (Japan Meteorological Agency 2011) 

and anomalies of integrated mean temperature (0-150 m) 

and zooplankton biomass along the PM line (36˚ N, 136˚ 

E-44˚ N, 132˚ E) in the TWC region for the period 1973-

1998 (Fig. 3) (Minami et al. 1999) were used to examine the 

fluctuations in the oceanic conditions in relation to the cli-

mate changes.

Year-to-year catch series of the 7 pelagic fishes (Pacific 

herring, Japanese sardine, anchovy, chub mackerel, jack 

mackerel, Pacific saury, and common squid) were con-

structed for the TWC (East China Sea and Yellow Sea and 
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Fig. 1. The Arctic Oscillation Index (AOI), Aleutian Low Pressure Index 
(ALPI), and Monsoon Index (MOI), 1900-2002. The strong ALPI in the 1930s 
and 1980s and weaker winter MOI in the 1900s and 1990s are marked by 
black bars (Gong et al. 2008).
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biological parameters (zooplankton biomass and year-

to-year catch as abundance indices). Correlation coef-

ficients between catch time series for the 7 species were 

calculated to examine the patterns in fluctuations among 

fish populations. Alternations of the dominant fish popu-

lations were examined for the TWC, KOC, and TWC + KOC 

regions.

RESULTS AND DISCUSSION
    

Climate and ocean regime shifts

The AOI showed decadal-scale variation patterns: dis-

tinct changes in 1971, 1977, and 1989. The wintertime ALPI 

showed a distinct change in 1977 from negative to posi-

tive values, indicating strengthening of the Aleutian Low 

after 1977. The wintertime MOI showed an abrupt change 

around 1987 from positive to negative anomalies, indicating 

the weakening Asian monsoon in the 1990s, while only slight 

changes occurred in the mid-1970s. The abrupt changes that 

occurred in 1976-1977 are common for AOI and ALPI, while 

the changes that occurred in the late 1980s (1988-1989) are 

common for AOI and MOI. These 3 indices also point to pos-

sible climate changes in the late 1990s (Fig. 1).

The winter (JFM) SST anomalies (5-year running aver-

age) in most areas of the TWC and KOC regions were far 

below the long-term average in the earlier period (1900s-

1940s). The anomalies in the TWC region were below the 

average in the late 1960s and 1980s but far above the av-

erage in the 1990s and 2000s. The winter SST anomalies 

in the northern KOC region (Area K, Sanriku; and Area L, 

Kanto-east) were above the average in the 1950s and late 

1960s and below the average in the 1980s. The winter SST 

anomalies in the TWC and KOC regions were above the 

have been so marked (Gong et al. 2007, 2008), there can 

be little doubt that they reflect real changes in population 

abundance.

A comparison was performed using time series of 

hydro-climatic (AOI, ALPI, MOI, and SST) anomalies and 

Winter SST anomaly (°C) (5-year average), TWC region
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Fig. 2. Winter (Jan, Feb, Mar) sea surface temperature (SST) anomaly by 
area in the Tsushima Warm Current (TWC) and Kuroshio-Oyashio Current 
(KOC) regions, 1900-2010. The TWC region covers Area B (southern East 
China Sea), C (northern East China Sea), D (Yellow Sea), E (southern East 
Sea/Japan Sea), and F (middle East Sea/Japan Sea). The KOC region covers 
Area K (off of Sanriku), L (Kanto-E), M (Kanto-S), N (northern Shikoku-
Tokai), and O (southern Shikoku-Tokai) (Japan Meteorological Agency 
2011).
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Fig. 3. Anomalies of the integrated mean temperature (triangle) from the surface to the 150-m layer and the zooplankton biomass (open circle) along the 
PM line (36˚ N, 136˚ E-44˚ N, 132˚ E) in the East Sea (Japan Sea), 1973-1998 (Minami et al. 1999). 
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(Japan Sea) sawed a see-saw variation pattern spatially. 

Cold anomalies were limited to the TWC region in the 

south in the 1970s but then extended to the whole East 

Sea (Japan Sea) during the 1980s. The whole region be-

came warm in the 1990s, and then the warm areas were 

reduced to the south during the 2000s. The time series of 

diatom abundance in the East Sea (Japan Sea) showed 

decadal variability and large inter-annual variations. Step 

change occurred in the spring diatom in 1979-1980 and 

1991-1992 and in the autumn diatom in 1995-1996 (Tian 

et al. 2008).

Six climate regime shifts were detected in the northern 

hemisphere SST fields during the period from the 1910s to 

the 1990s: 1925-1926, 1945-1946, 1957-1958, 1970-1971, 

1976-1977, and 1988-1989 (Yasunaka and Hanawa 2002). 

The 1976-1977 and 1988-1989 regime shifts have been de-

scribed as major shifts having Pacific-wide impacts, while 

the 1957-1958 and 1970-1971 regime shifts have been de-

scribed as minor shifts with limited ecological impacts 

(Yatsu et al. 2008). The time series of winter SST and the 

surface current velocity in the Kuroshio axis in the KOC 

region denoted the oceanic regime shifts in the mid-1970 

and late 1980s (Tian et al. 2004). These results suggest that 

a distinct regime shift in the oceanographic conditions in 

the TWC region occurred in the 1976-1977 and 1988-1989 

regime shifts. 

The effects of the 1976-1977 and 1988-1989 climate re-

gime shifts on regional ecosystems of the Northwestern 

Pacific (KOC region) from winter to spring can be sum-

marized as follows:  

After the climate regime shift in the mid-1970s (1976-

1977), strong winter wind stress was associated with the 

deep Aleutian Low enhanced vertical mixing and cool-

ing in the Oyashio region. Limited light intensity in the 

winter-spring seasons resulted in decreased biological 

production and delayed springtime blooming. The deep 

Aleutian Low enhanced vertical mixing and nutrient sup-

ply in the Kuroshio/subtropical region. Biological produc-

tion deceased in the winter but increased in the spring, 

delaying the springtime bloom (Yatsu et al. 2008).

After the climate regime shift in the late 1980s (1988-

1989), weak wind stress under the weakened Aleutian Low 

limited vertical mixing in the Oyashio region. Biological 

production increased in the winter-spring seasons under 

the strong light intensity and the springtime bloom oc-

curred earlier than usual. As a result of the limited vertical 

mixing and nutrient supply in the Kuroshio/subtropical 

region, biological production increased in the winter but 

decreased in the spring. However, the springtime bloom-

ing occurred earlier than usual (Yatsu et al. 2008). 

average after the climate regime shift (1988-1989) and re-

mained at high levels in the 1990s and 2000s (Fig. 2).

A positive MOI (+MOI) is associated with anomalously 

high pressure over the Asian Continent and intensified 

northwesterly winds which co-varies with the deep ALPI 

(+ALPI) and negative AOI (-AOI). Consequently, the in-

tensified northwesterly winds transport cool and dry air 

masses over the Far East, which results in a severe winter 

and cool regime in the TWC and KOC regions as seen in 

the 1980s. The opposite situation is marked by a nega-

tive MO index (-MOI), indicating reduced northwesterly 

air flow. Simultaneously, the inflow of cold and dry air 

masses from the Asian Continent is reduced, resulting in 

mild winters and warm SST over the Far East as seen in 

the 1990s (Figs. 1 and 2). 

Winter temperatures in the 50-m layer in the East Sea (Ja-

pan Sea) showed decadal variation patterns together with 

large inter-annual variations (Katoh et al. 2006). The cool 

regime in the 1980s and warm regime in the 1990s are 

clearly shown in the year-to-year strength anomalies of 

the TWC defined by the area >10°C in the 100-m layer in 

the East Sea (Japan Sea) during the period of 1961-2007 

(Japan Meteorological Agency 2009). 

The MOI is significantly correlated with winter SST in the 

TWC and KOC regions, suggesting that ocean variability is 

linked with the winter Asian monsoon. The oceanic shifts 

from the warm to cold regime in the mid-1970s and from 

the cold to warm regime in the late 1980s are associated 

with the climate regime shifts.

The inter-decadal variability of integrated (0-150-m 

layer) mean temperature and zooplankton biomass along 

the PM line in the TWC region was positively correlated 

with the 3-year time lag. Both variables were low during 

the 1980s after the climate regime shift (1976-1977) but 

increased after the regime shift (1988-1989) and remained 

higher than average during the warm regime in the 1990s 

(Fig. 3).  

The abrupt climate changes that occurred in 1976-1977 

are common for AOI and ALPI, while the changes occurred 

in the late 1980s (1988-1989) are common for AOI and 

MOI (Tian et al. 2004, King 2005). Year-to-year SST anom-

alies in the southern East Sea (Japan Sea; 34.5˚ N-38˚ N) 

denoted the cool regime (1920s-1930s and 1980s), warm 

regime (1950s and 1990s-2000s), and the long-term in-

creasing trends in the last century (Fig. 2). There was a cold 

period from the mid-1970s to the late 1980s, and then tem-

peratures were high from the late 1980s to the early 2000s in 

the TWC region in the East China Sea and southern East Sea 

(Japan Sea) (Naganuma 1992, Katoh et al. 2006). 

Decadal averaged winter SST anomalies in the East Sea 



Climate change and fluctuations of pelagic fish populations

19 http://jefb.org

some (about 30%) by trawl in recent years (National Fish-

eries Research and Development Institute 2010). 

Except in the main fishing seasons, most of the 7 pe-

lagic fish species emigrate from their fishing grounds.  

Table 1 shows main fishing seasons and catch rates of the 

7 pelagic fishes taken by main fishing gears in the western 

TWC region (off Korean peninsula ). 

Regional catch of the pelagic fish populations 

Records of the fisheries targeting the 7 pelagic fish pop-

ulations in the FAO Statistical Area 61 (north of 20° N, west 

of 175° W) date back to the early 1900s. Since the fishing 

operations by a certain country covers only small part of 

a population’s large range, the catch rates of pelagic fish 

species by the fishing countries have remarkable monthly 

variations. Therefore, we collected all of the catches for 

the 7 species from all fishing countries in the Far East. 

Year-to-year catches of the 7 pelagic fish populations 

from the FAO Area 61 are divided into 2 regions, the TWC 

(Yellow Sea, East China Sea and East Sea/Japan Sea) and 

the KOC (Northwestern Pacific and Okhotsk Sea), for the 

period of 1910-2008. The catches by Korea were from the 

TWC region and catches by Japan were from the KOC, and 

the TWC regions before 1951 and the catches after 1952 

are from the TWC and KOC regions by all of the fishing 

countries (China/Taiwan, Korea, Japan, and Russia). 

Year-to-year total catches of the 7 pelagic fishes in the 

TWC region steadily increased from 1,000,000 tons in the 

early 1960s to 3,000,000 tons in the late 1980s. The catch 

level was high (average 3,000,000 t) with large annual 

fluctuations for 11 years (1988-1998) and then slightly low 

(2,755.000 t) with small annual fluctuations for the next 10 

years (1999-2008) (Fig. 4). 

Distribution of pelagic fish populations and fish-
ing nature

The 7 pelagic fish populations (Pacific herring, Pacific 

sardine, Japanese anchovy, jack mackerel, chub mackerel, 

Pacific saury, and common squid) inhabit the waters from 

the subtropic to the subarctic zone in the Northwest Pa-

cific and its adjacent regions. They spawn in the southern 

part of their distribution range in the autumn, winter, and 

spring and then migrate to the north in the summer to 

feed in the northern part of their population area. 

Pacific herring (Clupea pallasii) inhabit cold coastal 

zones. Pacific sardines (Sardinops melanostictus) are 

abundantly distributed from the coast to the open sea. 

Japanese anchovies (Engraulis japonicus) inhabit the 

coastal zone but are distributed in the offshore region 

during the abundant period. Both sardines and anchovies 

exhibit large expansions and contractions of distribution 

range concomitant with changes in abundance (Nakaha-

ra and Ogawa 1979, Lluch-Belda et al. 1989, Kuroda 1991, 

Watabe 1992a, 1992b, Kawasaki 2009). 

Most of the 7 species are fished at the midpoint of their 

northward or southward migration. Fishing seasons of 

the 7 pelagic fishes are fairly different in the northwestern 

TWC region (off Korea). Chub mackerel (Scomber japoni-

cus), jack mackerel (Trachurus japonicus), and Pacific sar-

dines are fished in the TWC and KOC regions mainly us-

ing purse seine. Pacific saury (Coloabis saira) inhabit high 

haline warm water and have been fished mainly using gill 

nets (90%) in the TWC region (Gong et al. 1983, Gong and 

Suh 2004) but mainly using stick-held dip nets in the KOC 

region (Fukushima 1979, Kosaka 2000). Common squid 

(Todarodes pacificus) were fished mainly by jigging but 

Table 1. Main fishing seasons and catch rates of the 7 pelagic fishes taken 
by main fishing gears in the western TWC region (off Korean peninsula)

Fish species Fishing season
Period, 1971-2008

Fishing gear (catch rate, %)
Period, 1956-2008

Pacific sardine Spring, autumn Purse seine (88.9),  
Set net (3.5)

Pacific saury Spring, autumn Gill net (92.0),  
Set net (1.2)

Chub mackerel Autumn Purse seine (89.6), 
Set net (2.7)

Common squid Autumn Jigging (53.6), 
Trawl net (29.0)

Jack mackerel Spring-summer Purse seine (69.1), 
Set net (12.6)

Anchovy Summer-autumn Drag net (52.7), 
Gill net (16.5)

Pacific herring Autumn-winter Purse seine (34.6), 
Gill net (33.5)
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Fig. 4. Year-to-year total catch of the 7 pelagic fishes (Pacific herring, 
Pacific sardine, anchovy, jack mackerel, chub mackerel, Pacific saury, and 
common squid) in the Tsushima Warm Current (TWC), Kuroshio-Oyashio 
Current (KOC), and TWC + KOC (FAO area 61; north of 20° N, west of 175° 
W) regions in the period 1920-2008.
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in the TWC region (mainly East Sea/Japan Sea) landed at 

the fishing ports along the Pacific coast (KOC region) in 

the late 1960s and early 1970s and were recorded in the 

Yearbook of Fishery Statistics of Japan. The catches of 

squid taken in the TWC region that landed in the fishing 

ports along the Pacific coast were added to the TWC re-

gion counts. Therefore, actual catches of common squid 

in the KOC region were very low in the late 1960s and early 

1970s but increased after the climate regime shift in the 

late 1980s (Gong et al. 2006, Gong and Choi 2008).

Correlation among catches of the 7 fish popula-
tions

Correlation coefficients among catches of the 7 pelagic 

fish populations are presented for the TWC, KOC, and 

TWC + KOC regions (Table 2). 

In the TWC region, the catch of Pacific sardine shows 

a negative correlation with the catches of other 5 species 

(Pacific herring, anchovy, jack mackerel, Pacific saury, and 

common squid). In particular, the correlation between 

sardine and saury shows a significant negative value (N 

= 46, r = -0.657). The catch of anchovy shows a positive 

correlation with the catches of the other 3 species (jack 

mackerel, chub mackerel, and common squid). The catch 

of the chub mackerel shows a negative correlation (N= 58, 

r = -0.529) with that of the jack mackerel but a positive 

correlation (N = 57, r = 0.674) with that of common squid 

in the TWC region (Table 2).

In the KOC region, the catch of Pacific sardine shows a 

negative correlation with the catches of the other 5 spe-

cies (Pacific herring, anchovy, jack mackerel, Pacific saury, 

and common squid) as in the TWC region. The catch of 

anchovy shows a positive correlation with the catches 

of the other 3 species (jack mackerel, Pacific saury, and 

common squid) but a negative correlation with the chub 

mackerel. 

In particular, the correlation coefficients between the 

catches of Pacific herring and sardine (N = 50, r = -0.534), 

sardine and anchovy (N = 50, r = -0.608), sardine and jack 

mackerel (N = 50, r = -0.557), and chub mackerel and jack 

mackerel (N = 58, r = -0.544) show significantly negative 

correlations in the KOC region. The catch of chub mack-

erel shows a negative correlation with the catch of jack 

mackerel in the KOC region and the TWC region, suggest-

ing that the 2 species are in strong competition.

In the entire population area (TWC + KOC), the catch 

of Pacific sardine shows a negative correlation with the 

catches of the other 5 species (Pacific herring, anchovy, 

jack mackerel, Pacific saury, and common squid), while 

The total catch in the KOC region increased sharply 

from about 2,000,000 t in the mid-1970s to about 5,000,000 

t in the mid-1980s. However, the catch decreased sharply 

in the early 1990s and then remained at the level of ap-

proximately 1,500,000 t after the mid-1990s. The catch 

level in the KOC region was generally higher than that in 

the TWC region before 1991 but was lower than that in the 

TWC region after 1992. 

Year-to-year total catches of the 7 pelagic fish popu-

lations in the entire TWC + KOC (FAO, Area 61) region 

showed a peak amounting to approximately 3,300,000 t in 

the 1930s and then decreased to approximately 900,000 t 

in the mid-1940s. Thereafter, the total catch steadily in-

creased to about 8,000,000 t in the mid-1980s and then 

decreased to 4,500,000 t in the 1990s and 2000s (Fig. 4). 

The 2 peaks in the year-to-year total catch in the whole 

area (TWC + KOC) of the 7 pelagic fish populations dur-

ing the cool regimes in the mid-1930s and mid-1980s are 

attributed to the high abundance of Pacific sardine in the 

entire population range. 

In the TWC and KOC regions, Pacific sardine catch in-

creased after Pacific herring catch decreased in the late 

1920s and late 1970s, and the anchovy catch increased 

soon after the sardine catch decreased in the late 1980s. 

These patterns of fluctuation in the Pacific herring popu-

lation are completely out of phase with those of the Pa-

cific sardine (Nakahara and Ogawa 1979, Kawasaki 1991). 

We can see a series of concurrences of a sardine peak 

(trough) and a herring trough (peak) as well as a sardine 

peak (trough) and an anchovy trough (peak), meaning 

that the 3 species are in opposite positions with regard to 

the climatic change. 

In the mid-1970s, the northeastern Pacific changed 

from a cool anchovy regime to a warm sardine regime. 

A shift back to an anchovy regime occurred in the mid- 

to late 1990s (Chavez et al. 2003). In the mid-1970s, the 

northwestern Pacific changed from a warm anchovy re-

gime to a cool sardine regime. A shift back to an anchovy 

regime occurred in the late 1980s (Lluch-Belda et al. 1989, 

Gong et al. 2008).

The chub mackerel catch increased soon after the jack 

mackerel catch decreased in the mid-1960s (Nakahara 

and Ogawa 1979, Takeshita and Hayashi 1991). Catches 

of Pacific saury and common squid were high during the 

warm regime in the 1950s-1960s and 1990s-2000s but 

were low during the cool regime in the mid-1970s and 

the 1980s. This switching of catches suggests alternations 

in abundance of the species related to the climate ocean 

change.   

A large amount (half or one third) of the squid taken 
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and fairly high correlation coefficients. The catch of Pacif-

ic sardine shows a negative correlation with the catches of 

the other 5 species (Pacific herring, anchovy, jack mack-

erel, Pacific saury, and common squid) in the TWC, KOC 

as well as in the TWC + KOC regions, suggesting that the 5 

species are strongly affected by the Pacific sardine in the 

entire population area.

Alternation of the dominant fish species 

Since the catches of anchovy, jack mackerel, and Pacific 

saury are negatively correlated with that of Pacific sardine 

(Table 2) and the catches of all 3 species are comparative-

ly small, a combined catch of the 3 species (C group) and 

the catch of chub mackerel (B group) were compared with 

that of the Pacific sardine (A group) (Fig. 5). 

During the long period of 1910-2008 (99 years), an or-

the catch of anchovy shows a positive correlation with the 

catches of the other 4 species (jack mackerel, chub mack-

erel, Pacific saury, and common squid). Correlation coef-

ficients between any pair of the common squid, anchovy, 

and chub mackerel are high in the TWC and TWC + KOC 

regions, while the chub mackerel and common squid are 

negatively correlated in the KOC region. The correlation 

coefficients between the catch of jack mackerel and Pa-

cific saury (N = 83, r = 0.719), jack mackerel and common 

squid (N = 83, r = 0.724), and Pacific saury and common 

squid (N = 83, r = 0.643) are significantly high in the whole 

population area (TWC + KOC regions), suggesting that 

the abundant periods of these 3 species occur simultane-

ously. 

The abundant period (1960s and 1990s) of anchovy, 

jack mackerel, and common squid are fairly simultaneous 

in the TWC + KOC region as evidenced by the catch trend 

Table 2. Correlation matrix of the annual catch fluctuation of the 7 pelagic fish populations in the Tsushima Warm Current (TWC), Kuroshio-Oyashio Cur-
rent (KOC) and TWC + KOC regions

1 2 3 4 5 6 7

TWC

1. Pacific herring (1963-2008) 1 -0.355 0.063       -0.299 0.297 0.514 0.315

2. Pacific sardine (1963-2008) 1       -0.323       -0.373 0.096 -0.657       -0.268

3. Japanese anchovy (1963-2008) 1 0.207 0.353 -0.183 0.541

4. Jack mackerel (1953-2008) 1 -0.529 0.107       -0.177

5. Chub mackerel (1951-2008) 1 -0.115 0.674

6. Pacific saury (1954-2008) 1 0.208

7. Common squid (1952-2008) 1

KOC  

1. Pacific herring (1959-2008) 1 -0.534 0.383 0.362 0.073       -0.324 0.492

2. Pacific sardine (1959-2008) 1       -0.608       -0.557 0.171       -0.166       -0.586

3. Japanese anchovy (1959-2008) 1 0.379       -0.499 0.191 0.413

4. Jack mackerel (1953-2008) 1       -0.544 0.089 0.569

5. Chub mackerel (1951-2008) 1       -0.378       -0.401

6. Pacific saury (1959-2008) 1 0.182

7. Common squid (1952-2008) 1

TWC + KOC

1. Pacific herring (1911-2008) 1 -0.444       -0.216 0.026       -0.125       -0.205       -0.278

2. Pacific sardine (1910-2008) 1       -0.149       -0.313 0.233       -0.081       -0.225

3. Japanese anchovy (1910-2008) 1 0.474 0.400 0.472 0.593

4. Jack mackerel (1926-2008) 1 0.193 0.719 0.724

5. Chub mackerel (1926-2008) 1 0.469 0.345

6. Pacific saury (1926-2008) 1 0.643

7. Common squid (1895-2008) 1

The period for each species is shown in parentheses. 
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derly alternation of the dominant pelagic fishes groups 

was observed in the TWC, KOC, and TWC + KOC regions. 

After the collapse of herring fishery in the late 1920s, the 

sardine (A group) dominated in the 1930s, and 3 other 

species (Pacific saury, jack mackerel, and Japanese an-

chovy) (C group) in the 1950s-1960s, chub mackerel (B 

group) in the 1970s, and then sardine (A group) again in 

the 1980s. As sardine (A group) biomass decreased in as-

sociation with the climate shifts in the late 1980s, catches 

of the 3 other species (C group) increased immediately 

in the warm regime from the late 1980s to the 1990s (Fig. 

5). The dominant period of the 7 species lasted for 10-20 

years. However, a comparatively low catch of chub mack-

erel (C group) in the KOC region in the 1990s was noticed, 

suggesting that the fish population in the Pacific side de-

clined or shifted to the TWC region (Gong et al. 2008).  

Small pelagic schooling fish can respond dramatically 

and quickly to climatic variations (Hunter and Alheit 

1995). Most such species are highly mobile, rely on short 

plankton-based food chains, are highly fecund, and have 

plasticity in growth, survival, and other life history traits. 

These biological characteristics make them sensitive to 

environmental forcing and are highly variable in abun-

dance (Kawai 1987, Alheit and Hagen 1997). It has been 

suggested that most of the species exhibiting alternation 

of dominance are planktivore pelagic fishes that migrate 

in the large range. Pacific sardines feed on phytoplankton 

and zooplankton, while most of the small pelagic fishes 

feed on zooplankton and/or juveniles of fish.

An orderly succession of dominant (i.e., exhibiting 

greatest abundance) pelagic species has been observed in 

the KOC and California current systems (MacCall 1996), in 

the Humboldt system, and off the coast of South Africa. It 

is suggested that small pelagic fishes exhibit large expan-

sion and contractions of range concomitant with changes 

in abundance (Nakahara and Ogawa 1979, Lluch-Belda et 

al. 1989, Kuroda 1991, Watabe 1992a, 1992b). 

Chub mackerel and sardine extend their habitats from 

the north to the south; on the other hand, jack mackerel 

and anchovy extend from the south to the north when 

their population strengths increase in the waters off of Ja-

pan, suggesting that the former group developed in the 

northern waters while the latter group developed in the 

southern waters (Nakahara and Ogawa 1979). The ocean-

ic shifts from warm to cold regimes in the 1970s and from 

cold to warm regimes in the late 1980s are associated with 

the climate regime shifts. During the cool regime between 

the regime shifts in 1977-1978 and 1988-1989, low tem-

perature from the surface to the subsurface water in as-

sociation with the deep Aleutian Low Pressure enhanced 

Fig. 5. Catches of pelagic fish species groups in the Tsushima Warm 
Current (TWC) region (a), Kuroshio-Oyashio Current (KOC) region (b), and 
TWC + KOC region (FAO Area 61) (c), 1910-2008. 

a

c

b
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increased zooplankton biomass (e.g., 1990s). The group 

B (chub mackerel) period preceded the group A period. 

Therefore, the chub mackerel population (group B) is be-

lieved to be a successor of the C group (anchovy, Pacific 

saury, jack mackerel, and common squid) (Fig. 5) (Mat-

suda et al. 1992, Kuznetsov 1995, Yatsu et al. 2003).
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