참고문헌
- Naoi, M., Maruyama, W. and Nagy, G. M. (2004) Dopaminederived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 25, 193-204. https://doi.org/10.1016/S0161-813X(03)00099-8
- Yi, S., Akao, Y., Maruyama, W., Chen, K., Siih, J. and Naoi, M. (2006) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J. Neurochem. 96, 541-549. https://doi.org/10.1111/j.1471-4159.2005.03573.x
- Gerlach, M., Koutsilieri, E. and Riederer, P. (1998) N-methyl-(R)-salsolinol and its relevance to Parkinson's disease. Lancet 351, 850-851. https://doi.org/10.1016/S0140-6736(05)70284-1
- Maruyama, W., Abe, T., Tohgi, H. and Naoi, M. (1999) An endogenous MPTP-like dopaminergic neurotoxin, N-methyl( R)salsolinol, in the cerebrospinal fluid decreases with progression of Parkinson's disease. Neurosci. Lett. 262, 13-16. https://doi.org/10.1016/S0304-3940(99)00003-8
- Naoi, M., Maruyama, W., Akao, Y. and Yi, H. (2002) Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson's disease. Neurotoxicol. Teratol. 24, 579-591. https://doi.org/10.1016/S0892-0362(02)00211-8
- Deisenhammer, F., Egg, R., Giovannoni, G., Hemmer, B., Petzold, A., Sellebbjerg, F., Teunissen, C. and Tumani, H. (2009) EFNS guidelines on disease-specific CSF investigation. Eur. J. Neurol. 16, 760-770. https://doi.org/10.1111/j.1468-1331.2009.02595.x
- Petzold, A., Brassat, D., Mas, P., Rejdak, K., Keir, G., Giovannoni, G. and Thompson, E. J. (2004) Treatment response in relation to inflammatory and axonal surrogate markers in multiple sclerosis. Mult. Scler. 10, 281-283. https://doi.org/10.1191/1352458504ms1021sr
- Teunissen, C. E., Iacobaeus, E., Khademi, M., Brundin, L., Norgren, N., Koel-Simmelink, M. J., Schepens, M., Bouwman, F., Twaalfhoven, H. A., Blom, H. J., Jakobs, C. and Dijkstra, C. D. (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322-1329. https://doi.org/10.1212/WNL.0b013e3181a0fe3f
- Nixon, R. A. and Lewis, S. E. (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J. Biol. Chem. 26, 16298-16301.
- Nixon, R. A. and Shea, T. B. (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell. Motil. Cytoskeleton. 22, 81-91. https://doi.org/10.1002/cm.970220202
- Perrot, R., Berges, R., Bocquet, A. and Eyer, J. (2008) Review of the multiple aspects of neurofilament functions and their possible contribution to neurodegeneration. Mol. Neurobiol. 38, 27-65. https://doi.org/10.1007/s12035-008-8033-0
- Shepherd, C. E., McCann, H., Thiel, E. and Halliday, G. M. (2002) Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurobiol. Dis. 9, 249-257. https://doi.org/10.1006/nbdi.2001.0469
- Collard, J. F., Cote, F. and Jullien, J. P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61-64. https://doi.org/10.1038/375061a0
- Riess, O., Kuhn, W. and Kruger, R. (2000) Genetic influence on the development of Parkinson's disease. J. Neurol. 247, II69-II74. https://doi.org/10.1007/PL00007764
- Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames, B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179. https://doi.org/10.1073/pnas.85.9.3175
- Gille, J. J., Pasman, P., van Berkel, C. G. and Joenje, H. (1991) Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine. Mutagenesis 6, 313-318. https://doi.org/10.1093/mutage/6.4.313
- Dobrota, D., Fedorova, T., Stvolinsky, S., Babusikova, E., Likaveanova, K., Drgova, A., Strapkova, A. and Boldyrev, A. (2005) Carnosine protects the brain of rats and Mongoliangerbils against ischemic injury: after-stroke-effect. Neurochem. Res. 30, 1283-1288. https://doi.org/10.1007/s11064-005-8799-7
- Ozel Turkcu, U., Bilgihan, A., Biberoglu, G. and Mertoglu Caglar, O. (2010) Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress. Mol. Cell. Biochem. 339, 55-61. https://doi.org/10.1007/s11010-009-0369-x
- Stvolinsky, S., Kukley, M., Dobrota, D., Mezesova, V., Boldyrev, V. and Boldyrev, A. (2000) Carnosine protects rats under global ischemia. Brain Res. Bull. 53, 445-448. https://doi.org/10.1016/S0361-9230(00)00366-X
- Rahner, N., Holzmann, C., Kruger, R., Schols, L., Berger, K. and Riess, O. (2002) Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease. Brain Res. 951, 82-86. https://doi.org/10.1016/S0006-8993(02)03138-4
- Kim, H. J., Yoon, H. R., Washington, S., Chang, I. I. Oh, Y. J. and Surh, Y. J. (1997) DNA strand scission and PC12 cell death induced by salsolinol and copper. Neurosci. Lett. 238, 95-98. https://doi.org/10.1016/S0304-3940(97)00866-5
- Jung, Y. and Surh, Y. J. (2001) Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 30, 1407-1417. https://doi.org/10.1016/S0891-5849(01)00548-2
- Surh, Y. J., Jung, Y. J., Jang, J. H., Lee, J. S. and Yoon, H. R. (2002) Iron enhancement of oxidative DNA damage and neuronal cell death induced by salsolinol. J. Toxicol Environ. Health A. 65, 473-488. https://doi.org/10.1080/15287390252808127
- Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352. https://doi.org/10.1016/0014-5793(81)80114-7
- Refsgaardm, H. H., Tsai, L. and Stadman, E. R. (2000) Modification of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl. Acad. Sci. U.S.A. 97, 611-616. https://doi.org/10.1073/pnas.97.2.611
- Ching, G. Y. and Liem, R. K. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell. Biol. 122, 1323-1335. https://doi.org/10.1083/jcb.122.6.1323
- Lee, M. K., Xu, Z., Wong, P. C. and Cleveland, D. W. (1993) Neurofilaments are obligate heteropolymers in vivo. J. Cell. Biol. 122, 1337-1350. https://doi.org/10.1083/jcb.122.6.1337
- Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U. and Weber, K. (1983) Neurofilament architecture combine structural principles of intermediate filaments with carboxyl-terminal extensions increasing in size between triplet proteins. EMBO J. 2, 1295-1302.
- Reilly, M. M. (2000) Classification of the hereditary motor and sensory neuropathies. Curr. Opin. Neurol. 13, 561-564. https://doi.org/10.1097/00019052-200010000-00009
- Brownlees, J., Ackerley, S., Grierson, A. J., Jacobsen, N. J., Shea, K., Anderton, B. H., Leigh, P. N., Shaw, C. E. and Miller, C. C. (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum. Mol. Genet. 11, 2837-2844. https://doi.org/10.1093/hmg/11.23.2837
- Perez-Olle, R., Jones, S. T. and Liem, R. K. (2004) Phenotypic analysis of neurofilament light gene mutations linked to Charcot-Marie-Tooth disease in cell culture models. Hum. Mol. Genet. 13, 2207-2220. https://doi.org/10.1093/hmg/ddh236
- Zhai, J., Lin, H., Julien, J.-P. and Schlaepfer, W. W. (2007) Disruption of neurofilament net work with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth diseaselinked mutations in NFL and HSPB1. Hum. Mol. Genet. 16, 3103-3116. https://doi.org/10.1093/hmg/ddm272
- Sasaki, T., Gotow, T., Shiozaki, M., Sakaue, F., Saito, T., Julien, J., Uchiyama, Y. and Isanaga, S. (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum. Mol. Gent. 15, 943-952. https://doi.org/10.1093/hmg/ddl011
- Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89, 245-250.
- Auroma, O. I., Laughton, M. J. and Halliwell, B. (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264, 863-869. https://doi.org/10.1042/bj2640863
- Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256. https://doi.org/10.1016/0022-5193(81)90073-4
- Decker, E. A., Crum, A. D. and Calvert, J. T. (1992) Differences in the Antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40, 756-759. https://doi.org/10.1021/jf00017a009
- Rajanikant, G. K., Zemke, D., Senut, M. C., Frenkel, M. B., Chen, A. F., Gupta, R. and Makid, A. (2007) Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38, 3023-3031. https://doi.org/10.1161/STROKEAHA.107.488502
- Tabakman, R., Lazarovici, P. and Kohen, R. (2002) Neuroprotective effects of carnosine and homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 68, 463-469. https://doi.org/10.1002/jnr.10228
- Aldini, G, Carini, M., Beretta, G., Bradamante, S. and Facino, R. M. (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem. Biophys. Res. Commun. 298, 699-706. https://doi.org/10.1016/S0006-291X(02)02545-7
- Kim, N. H. and Kang, J. H. (2003) Oxidative modification of neurofilament-L by copper-catalyzed reaction. J. Biochem. Mol. Biol. 36, 488-492. https://doi.org/10.5483/BMBRep.2003.36.5.488
- Smith, M. A., Rudnicka-Nawrot, M., Richey, P. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, L. M. and Perry, G. (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease. J. Neurochem. 64, 2660-2666. https://doi.org/10.1046/j.1471-4159.1995.64062660.x
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
- Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. J. Biochem. Mol. Biol. 39, 452-456. https://doi.org/10.5483/BMBRep.2006.39.4.452
- Hugli, T. E. and Moore, S. (1972) Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. J. Biol. Chem. 247, 2828-2834.
피인용 문헌
- Alpha-synuclein overexpression induced mitochondrial damage by the generation of endogenous neurotoxins in PC12 cells vol.547, 2013, https://doi.org/10.1016/j.neulet.2013.05.012
- Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.220
- An Overview of Endogenous Catechol-Isoquinolines and Their Related Enzymes: Possible Biomarkers for Parkinson’s Disease vol.1, pp.2, 2012, https://doi.org/10.1007/s13670-012-0012-7
- Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein vol.46, pp.11, 2013, https://doi.org/10.5483/BMBRep.2013.46.11.138
- Salsolinol: an Unintelligible and Double-Faced Molecule—Lessons Learned from In Vivo and In Vitro Experiments vol.33, pp.2, 2018, https://doi.org/10.1007/s12640-017-9818-6
- Glycotoxins: Dietary and Metabolic Origins; Possible Amelioration of Neurotoxicity by Carnosine, with Special Reference to Parkinson’s Disease vol.34, pp.1, 2018, https://doi.org/10.1007/s12640-018-9867-5