DOI QR코드

DOI QR Code

CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway

  • Kang, Bo-Ram (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University) ;
  • Nam, Sung-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Ryul (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Mi-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
  • Received : 2011.07.18
  • Accepted : 2011.10.18
  • Published : 2012.02.29

Abstract

Our previous study demonstrated that CopA3, a disulfide dimer of the coprisin peptide analogue (LLCIALRKK), has antibacterial activity. In this study, we assessed whether CopA3 caused cellular toxicity in various mammalian cell lines. CopA3 selectively caused a marked decrease in cell viability in Jurkat T, U937, and AML-2 cells (human leukemia cells), but was not cytotoxic to Caki or Hela cells. Fragmentation of DNA, a marker of apoptosis, was also confirmed in the leukemia cell lines, but not in the other cells. CopA3-induced apoptosis in leukemia cells was mediated by apoptosis inducing factor (AIF), indicating induction of a caspase-independent signaling pathway.

Keywords

References

  1. Hwang, J. S., Lee, J. Y., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. S. and Lee, D. G. (2009) Isolation and Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus. Int. J. Pept. 2009, 1-5.
  2. Lamberty, M., Ades, S., Uttenweiler-Joseph, S., Brookhart, G., Bushey, D., Hoffmann, J. A. and Bulet, P. (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326. https://doi.org/10.1074/jbc.274.14.9320
  3. Varkey, J. and Nagaraj, R. (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob. Agents Chemother. 49, 4561-4566. https://doi.org/10.1128/AAC.49.11.4561-4566.2005
  4. Raghuraman, H. and Chattopadhyay, A. (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem. Phys. Lipids. 134, 183-189. https://doi.org/10.1016/j.chemphyslip.2004.12.011
  5. Wieprecht, T., Apostolov, O. and Seelig, J. (2000) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem. 85, 187-198. https://doi.org/10.1016/S0301-4622(00)00120-4
  6. Zhang, W., Li, D. and Mehta, J. L. (2004) Role of AIF in human coronary artery endothelial cell apoptosis. Am. J. Physiol. Heart. Circ. Physiol. 286, H354-358. https://doi.org/10.1152/ajpheart.00579.2003
  7. Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. (2007) Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  8. Okada, H. and Mak, T. W. (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592-603. https://doi.org/10.1038/nrc1412
  9. Zwaal, R. F., Comfurius, P. and Bevers, E. M. (2005) Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life. Sci. 62, 971-988. https://doi.org/10.1007/s00018-005-4527-3
  10. Kim, J. H., Jang, Y. O., Kim, B. T., Hwang, K. J. and Lee, J. C. (2009) Induction of caspase-dependent apoptosis in melanoma cells by the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea. BMB Rep. 42, 806-811. https://doi.org/10.5483/BMBRep.2009.42.12.806
  11. Varkey, J., Singh, S. and Nagaraj, R. (2006) Antibacterial activity of linear peptides spanning the carboxy-terminal beta-sheet domain of arthropod defensins. Peptides 27, 2614-2623. https://doi.org/10.1016/j.peptides.2006.06.010
  12. Raghuraman, H. and Chattopadhyay, A. (2007) Melittin: a membrane-active peptide with diverse functions. Biosci. Rep. 27, 189-223. https://doi.org/10.1007/s10540-006-9030-z
  13. Hancock, R. E. and Scott, M. G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U.S.A 97, 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
  14. Dathe, M. and Wieprecht, T. (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta. 1462, 71-87. https://doi.org/10.1016/S0005-2736(99)00201-1
  15. Iwasaki, T., Ishibashi, J., Tanaka, H., Sato, M., Asaoka, A., Taylor, D. and Yamakawa, M. (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30, 660-668. https://doi.org/10.1016/j.peptides.2008.12.019
  16. Shin, D. H., Park, K. W., Wu, L. C. and Hong, J. W. (2011) ZAS3 promotes TNFalpha-induced apoptosis by blocking NFvarkappaB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2. BMB Rep. 44, 267-272. https://doi.org/10.5483/BMBRep.2011.44.4.267
  17. Vilcek, J. and Lee, T. H. (1991) Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J. Biol. Chem. 266, 7313-7316.
  18. Malleo, G., Mazzon, E., Siriwardena, A. K. and Cuzzocrea, S. (2007) Role of tumor necrosis factor-alpha in acute pancreatitis: from biological basis to clinical evidence. Shock 28, 130-140. https://doi.org/10.1097/shk.0b013e3180487ba1
  19. Frolkis, I., Gurevitch, J., Yuhas, Y., Iaina, A., Wollman, Y., Chernichovski, T., Paz, Y., Matsa, M., Pevni, D., Kramer, A., Shapira, I. and Mohr, R. (2001) Interaction between paracrine tumor necrosis factor-alpha and paracrine angiotensin II during myocardial ischemia. J. Am. Coll. Cardiol. 37, 316-322. https://doi.org/10.1016/S0735-1097(00)01055-X
  20. Kitanaka, C., Kato, K. and Tanaka, Y. (2007) Ras protein expression and autophagic tumor cell death in neuroblastoma. Am. J. Surg. Pathol. 31, 153-155. https://doi.org/10.1097/01.pas.0000213398.87816.1f
  21. Zeuner, A., Eramo, A., Testa, U., Felli, N., Pelosi, E., Mariani, G., Srinivasula, S. M., Alnemri, E. S., Condorelli, G., Peschle, C. and De Maria, R. (2003) Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death. Differ. 10, 905-913. https://doi.org/10.1038/sj.cdd.4401255
  22. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  23. Tas, J. and Westerneng, G. (1981) Fundamental aspects of the interaction of propidium diiodide with nuclei acids studied in a model system of polyacrylamide films. J. Histochem. Cytochem. 29, 929-936. https://doi.org/10.1177/29.8.6168679

Cited by

  1. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis vol.437, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.06.031
  2. Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells vol.28, pp.6, 2012, https://doi.org/10.3892/or.2012.2060
  3. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells vol.48, pp.6, 2015, https://doi.org/10.5483/BMBRep.2015.48.6.073
  4. Synthesis and antimicrobial activity of cysteine-free coprisin nonapeptides vol.443, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2013.11.125
  5. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin vol.448, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.04.105
  6. Herb mixture C5E aggravates doxorubicin-induced apoptosis of human breast cancer cell lines vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3195-5
  7. Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins vol.445, pp.1, 2014, https://doi.org/10.1016/j.bbrc.2014.01.130
  8. Meta-analysis of genetic polymorphisms in programmed cell death 1 vol.74, pp.3, 2015, https://doi.org/10.1007/s00393-014-1415-y
  9. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle vol.47, pp.11, 2014, https://doi.org/10.5483/BMBRep.2014.47.11.262
  10. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4162-z
  11. The American cockroach peptide periplanetasin-4 inhibits Clostridium difficile toxin A-induced cell toxicities and inflammatory responses in the mouse gut 2017, https://doi.org/10.1002/psc.3046
  12. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy vol.443, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2013.12.054
  13. Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.38
  14. The Insect Peptide CopA3 Increases Colonic Epithelial Cell Proliferation and Mucosal Barrier Function to Prevent Inflammatory Responses in the Gut vol.291, pp.7, 2016, https://doi.org/10.1074/jbc.M115.682856
  15. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis vol.43, pp.2, 2013, https://doi.org/10.3892/ijo.2013.1973
  16. Insect antimicrobial peptides: potential tools for the prevention of skin cancer vol.100, pp.17, 2016, https://doi.org/10.1007/s00253-016-7718-y
  17. Isolation and antiproliferation of tumor cells by a novel peptide (TC22) from the beetle Tribolium castaneum pp.1438-2199, 2018, https://doi.org/10.1007/s00726-018-2666-8
  18. Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons vol.32, pp.1, 2018, https://doi.org/10.1007/s00540-017-2431-2