References
- Hwang, J. S., Lee, J. Y., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. S. and Lee, D. G. (2009) Isolation and Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus. Int. J. Pept. 2009, 1-5.
- Lamberty, M., Ades, S., Uttenweiler-Joseph, S., Brookhart, G., Bushey, D., Hoffmann, J. A. and Bulet, P. (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326. https://doi.org/10.1074/jbc.274.14.9320
- Varkey, J. and Nagaraj, R. (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob. Agents Chemother. 49, 4561-4566. https://doi.org/10.1128/AAC.49.11.4561-4566.2005
- Raghuraman, H. and Chattopadhyay, A. (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem. Phys. Lipids. 134, 183-189. https://doi.org/10.1016/j.chemphyslip.2004.12.011
- Wieprecht, T., Apostolov, O. and Seelig, J. (2000) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem. 85, 187-198. https://doi.org/10.1016/S0301-4622(00)00120-4
- Zhang, W., Li, D. and Mehta, J. L. (2004) Role of AIF in human coronary artery endothelial cell apoptosis. Am. J. Physiol. Heart. Circ. Physiol. 286, H354-358. https://doi.org/10.1152/ajpheart.00579.2003
- Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. (2007) Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
- Okada, H. and Mak, T. W. (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592-603. https://doi.org/10.1038/nrc1412
- Zwaal, R. F., Comfurius, P. and Bevers, E. M. (2005) Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life. Sci. 62, 971-988. https://doi.org/10.1007/s00018-005-4527-3
- Kim, J. H., Jang, Y. O., Kim, B. T., Hwang, K. J. and Lee, J. C. (2009) Induction of caspase-dependent apoptosis in melanoma cells by the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea. BMB Rep. 42, 806-811. https://doi.org/10.5483/BMBRep.2009.42.12.806
- Varkey, J., Singh, S. and Nagaraj, R. (2006) Antibacterial activity of linear peptides spanning the carboxy-terminal beta-sheet domain of arthropod defensins. Peptides 27, 2614-2623. https://doi.org/10.1016/j.peptides.2006.06.010
- Raghuraman, H. and Chattopadhyay, A. (2007) Melittin: a membrane-active peptide with diverse functions. Biosci. Rep. 27, 189-223. https://doi.org/10.1007/s10540-006-9030-z
- Hancock, R. E. and Scott, M. G. (2000) The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U.S.A 97, 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
- Dathe, M. and Wieprecht, T. (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta. 1462, 71-87. https://doi.org/10.1016/S0005-2736(99)00201-1
- Iwasaki, T., Ishibashi, J., Tanaka, H., Sato, M., Asaoka, A., Taylor, D. and Yamakawa, M. (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30, 660-668. https://doi.org/10.1016/j.peptides.2008.12.019
- Shin, D. H., Park, K. W., Wu, L. C. and Hong, J. W. (2011) ZAS3 promotes TNFalpha-induced apoptosis by blocking NFvarkappaB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2. BMB Rep. 44, 267-272. https://doi.org/10.5483/BMBRep.2011.44.4.267
- Vilcek, J. and Lee, T. H. (1991) Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J. Biol. Chem. 266, 7313-7316.
- Malleo, G., Mazzon, E., Siriwardena, A. K. and Cuzzocrea, S. (2007) Role of tumor necrosis factor-alpha in acute pancreatitis: from biological basis to clinical evidence. Shock 28, 130-140. https://doi.org/10.1097/shk.0b013e3180487ba1
- Frolkis, I., Gurevitch, J., Yuhas, Y., Iaina, A., Wollman, Y., Chernichovski, T., Paz, Y., Matsa, M., Pevni, D., Kramer, A., Shapira, I. and Mohr, R. (2001) Interaction between paracrine tumor necrosis factor-alpha and paracrine angiotensin II during myocardial ischemia. J. Am. Coll. Cardiol. 37, 316-322. https://doi.org/10.1016/S0735-1097(00)01055-X
- Kitanaka, C., Kato, K. and Tanaka, Y. (2007) Ras protein expression and autophagic tumor cell death in neuroblastoma. Am. J. Surg. Pathol. 31, 153-155. https://doi.org/10.1097/01.pas.0000213398.87816.1f
- Zeuner, A., Eramo, A., Testa, U., Felli, N., Pelosi, E., Mariani, G., Srinivasula, S. M., Alnemri, E. S., Condorelli, G., Peschle, C. and De Maria, R. (2003) Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death. Differ. 10, 905-913. https://doi.org/10.1038/sj.cdd.4401255
- Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
- Tas, J. and Westerneng, G. (1981) Fundamental aspects of the interaction of propidium diiodide with nuclei acids studied in a model system of polyacrylamide films. J. Histochem. Cytochem. 29, 929-936. https://doi.org/10.1177/29.8.6168679
Cited by
- Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis vol.437, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.06.031
- Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells vol.28, pp.6, 2012, https://doi.org/10.3892/or.2012.2060
- Anticancer activity of CopA3 dimer peptide in human gastric cancer cells vol.48, pp.6, 2015, https://doi.org/10.5483/BMBRep.2015.48.6.073
- Synthesis and antimicrobial activity of cysteine-free coprisin nonapeptides vol.443, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2013.11.125
- Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin vol.448, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.04.105
- Herb mixture C5E aggravates doxorubicin-induced apoptosis of human breast cancer cell lines vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3195-5
- Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins vol.445, pp.1, 2014, https://doi.org/10.1016/j.bbrc.2014.01.130
- Meta-analysis of genetic polymorphisms in programmed cell death 1 vol.74, pp.3, 2015, https://doi.org/10.1007/s00393-014-1415-y
- Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle vol.47, pp.11, 2014, https://doi.org/10.5483/BMBRep.2014.47.11.262
- Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4162-z
- The American cockroach peptide periplanetasin-4 inhibits Clostridium difficile toxin A-induced cell toxicities and inflammatory responses in the mouse gut 2017, https://doi.org/10.1002/psc.3046
- Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy vol.443, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2013.12.054
- Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.38
- The Insect Peptide CopA3 Increases Colonic Epithelial Cell Proliferation and Mucosal Barrier Function to Prevent Inflammatory Responses in the Gut vol.291, pp.7, 2016, https://doi.org/10.1074/jbc.M115.682856
- Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis vol.43, pp.2, 2013, https://doi.org/10.3892/ijo.2013.1973
- Insect antimicrobial peptides: potential tools for the prevention of skin cancer vol.100, pp.17, 2016, https://doi.org/10.1007/s00253-016-7718-y
- Isolation and antiproliferation of tumor cells by a novel peptide (TC22) from the beetle Tribolium castaneum pp.1438-2199, 2018, https://doi.org/10.1007/s00726-018-2666-8
- Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons vol.32, pp.1, 2018, https://doi.org/10.1007/s00540-017-2431-2