References
- Miyata, S. Clays Clay Miner. 1983, 31, 305. https://doi.org/10.1346/CCMN.1983.0310409
- Miyata, S.;Okada, A. Clays Clay Miner. 1977, 25, 14. https://doi.org/10.1346/CCMN.1977.0250103
- Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
- Kahn, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191. https://doi.org/10.1039/b204076j
- Newman, S.; Jones, W. New J. Chem. 1998, 22, 105. https://doi.org/10.1039/a708319j
- Tseung, A. C. C.; Goldstein, J. R. J. Mater. Sci. 1972, 7, 1383.
- Baird, T.; Campbell, K. C.; Holliman, P. J.; Hoyle, R.; Noble, G.; Stirling, D.; Williams, B. P. J. Mater. Chem. 2003, 13, 2341. https://doi.org/10.1039/b303449f
- Liu, J.; Li, F.; Evans, D. G.; Duan, X. Chem. Commun. 2003, 542.
- Evans, D. G.; Duan, X. Chem. Commun. 2006, 485.
- Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872. https://doi.org/10.1021/ja0584471
- Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH Publisher: New York, 1996.
- Williams, A. G. B.; Schere, M. M. Environ. Sci. Technol. 2001, 35, 3488. https://doi.org/10.1021/es010579g
- Christiansen, B. C.; Balic-Zunic, T.; Petit, P.-O.; Frandsen, C.; Morup, S.; Geckeis, H.; Katerinopoulou, A.; Svane Stipp, S. L. Geochim. Cosmochim. Acta 2009, 73, 3579. https://doi.org/10.1016/j.gca.2009.03.032
- Ma, Z.; Liu, Z.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257. https://doi.org/10.1021/ja0693035
- Lee, J. H.; Chang, J.; Cha, J.-H.; Jung, D.-Y.; Kim, S. S.; Kim, J. M. Chem. Eur. J. 2010, 16, 8296. https://doi.org/10.1002/chem.201000703
- Latimer, W. M. Oxidation Potentials, 2nd ed.; Prentice Hall, Academic Press: New York, 1952.
- Lee, J. H.; Du, Y.; O'Hare, D. Chem. Mater. 2009, 21, 963. https://doi.org/10.1021/cm802828z
- del Arco, M.; Malet, P.; Trujillano, P.; Rives, V. Chem. Mater. 1999, 11, 624. https://doi.org/10.1021/cm9804923
- Moriguchi, T.; Yano, K.; Nakagawa, S.; Kaji, F. J. Colloid Interface Sci. 2003, 260, 19. https://doi.org/10.1016/S0021-9797(02)00157-1
- Holmgren, A.; Wu, L.; Forsling, W. Spectrochim. Acta A 1999, 55, 1721. https://doi.org/10.1016/S1386-1425(98)00342-4
- Lee, J. H.; Rhee, S. W.; Jung, D.-Y. Bull. Korean. Chem. Soc. 2005, 26, 248. https://doi.org/10.5012/bkcs.2005.26.2.248
Cited by
- A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water vol.9, pp.2, 2015, https://doi.org/10.1021/nn5069836
- Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts vol.3, pp.4, 2016, https://doi.org/10.1039/C6QI00009F
- Charge Transfer in Ultrafine LDH Nanosheets/Graphene Interface with Superior Capacitive Energy Storage Performance vol.9, pp.43, 2017, https://doi.org/10.1021/acsami.7b09373
- 2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction vol.12, pp.1, 2012, https://doi.org/10.1007/s40820-020-00421-5
- Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides vol.26, pp.29, 2012, https://doi.org/10.1002/chem.201905397
- CoNiFe Layered Double Hydroxide/RuO2.1 Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li-O2 Batteries vol.12, pp.29, 2012, https://doi.org/10.1021/acsami.0c07656