DOI QR코드

DOI QR Code

The MDI-Mediated Lateral Crosslinking of Polyurethane Copolymer and the Impact on Tensile Properties and Shape Memory Effect

  • Chung, Yong-Chan (Department of Chemistry, The University of Suwon) ;
  • Choi, Jae-Won (School of Nano Engineering, Center for Nano Manufacturing, Institute of Basic Science, Inje University) ;
  • Chung, Hyang-Mi (Department of Chemistry, The University of Suwon) ;
  • Chun, Byoung-Chul (School of Nano Engineering, Center for Nano Manufacturing, Institute of Basic Science, Inje University)
  • Received : 2011.08.10
  • Accepted : 2011.11.28
  • Published : 2012.02.20

Abstract

Keywords

References

  1. Tobushi, H.; Hara, H.; Yamada, E.; Hayashi, S. Smart Mater. Struct. 1996, 5, 483. https://doi.org/10.1088/0964-1726/5/4/012
  2. Lee, B. S.; Chun, B. C.; Chung, Y. C.; Sul, K. I.; Cho, J. W. Macromolecules 2001, 34, 6431. https://doi.org/10.1021/ma001842l
  3. Lendlein, A.; Kelch, S. Angew. Chem. Int. Ed. 2002, 41, 2034. https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  4. Kingshott, P.; McArthur, S.; Thissen, H.; Castner, D. G.; Griesser, H. J. Biomaterials 2002, 23, 4775. https://doi.org/10.1016/S0142-9612(02)00228-4
  5. Tan, J.; McClung, W. G.; Brash, J. L. Trans. Soc. Biomater. 2003, 26, 470.
  6. Rao, J.; Gong, F.; Cheng, S. J.; Chen, J. D. Polym. Bull. 2009, 62, 867. https://doi.org/10.1007/s00289-009-0058-7
  7. Chung, Y. C.; Lim, N. K.; Choi, J. W.; Chun, B. C. J. Intell. Mat. Sys. 2009, 20, 1163. https://doi.org/10.1177/1045389X09103659
  8. Chun, B. C.; Chong, M. H.; Chung, Y. C. J. Mat. Sci. 2007, 42, 6524. https://doi.org/10.1007/s10853-007-1568-z
  9. Chung, Y. C.; Choi, J. H.; Chun, B. C. J. Mat. Sci. 2008, 43, 6366. https://doi.org/10.1007/s10853-008-2916-3
  10. Chun, B. C.; Cho, T. K.; Chong, M. H.; Chung, Y. C. J. Mat. Sci. 2007, 42, 9045. https://doi.org/10.1007/s10853-007-1824-2
  11. Chung, Y. C.; Cho, T. K.; Chun, B. C. J. Appl. Polym. Sci. 2009, 112, 2800. https://doi.org/10.1002/app.29538
  12. Freij-Larsson, C.; Wesslen, B. J. Appl. Polym. Sci. 1993, 50, 345. https://doi.org/10.1002/app.1993.070500215
  13. Tan, K.; Obendorf, S. K. J. Mem. Sci. 2006, 274, 150. https://doi.org/10.1016/j.memsci.2005.08.004
  14. Alves, P.; Coelho, J. F. J.; Haack, J.; Rota, A.; Bruinink, A.; Gil, M. H. Eur. Polym. J. 2009, 45, 1412. https://doi.org/10.1016/j.eurpolymj.2009.02.011
  15. Chung, Y. C.; Nguyen, D. K.; Chun, B. C. Poly. Eng. Sci. 2010, 50, 2457. https://doi.org/10.1002/pen.21746
  16. Prisacariu, C.; Buckley, C. P.; Caraculacu, A. A. Polymer 2005, 46, 3884. https://doi.org/10.1016/j.polymer.2005.03.046
  17. Petrovic, Z. S.; Javni, I.; Divjakovic, V. J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 221. https://doi.org/10.1002/(SICI)1099-0488(19980130)36:2<221::AID-POLB3>3.0.CO;2-U
  18. Mondal, S.; Hu, J. L. J. Mem. Sci. 2006, 276, 16. https://doi.org/10.1016/j.memsci.2005.09.029
  19. Rueda-Larraz, L.; Fernandez d'Arlas, B.; Tercjak, A.; Ribes, A.; Mondragon, I.; Eceiz, A. Eur. Polym. J. 2009, 45, 2096. https://doi.org/10.1016/j.eurpolymj.2009.03.013

Cited by

  1. The effect of the diphenylamino side group on the reduction of the molecular interaction between polyurethane copolymer chains vol.128, pp.5, 2013, https://doi.org/10.1002/app.38545
  2. Application of lateral sol–gel type crosslinking to a polyurethane copolymer vol.64, pp.3, 2012, https://doi.org/10.1007/s10971-012-2888-2
  3. Characterisation and application of polyurethane copolymers grafted with photoluminescent dyes vol.130, pp.4, 2014, https://doi.org/10.1111/cote.12097
  4. Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent vol.132, pp.14, 2014, https://doi.org/10.1002/app.41676
  5. Preparation of urethane-acrylates by the photo-polymerization of acrylate monomers using a benzophenone initiator grafted onto a polyurethane copolymer vol.22, pp.10, 2014, https://doi.org/10.1007/s13233-014-2154-2
  6. Effects of the structures of end groups of pendant polydimethylsiloxane attached to a polyurethane copolymer on the low temperature toughness vol.55, pp.8, 2015, https://doi.org/10.1002/pen.24034
  7. Characterization and proof testing of the halochromic shape memory polyurethane vol.71, pp.5, 2014, https://doi.org/10.1007/s00289-014-1116-3
  8. Impact of cholesterol grafting on molecular interactions and low temperature flexibility of polyurethanes vol.23, pp.4, 2015, https://doi.org/10.1007/s13233-015-3043-z
  9. Characterization of a polyurethane copolymer covalently linked to graphite and the influence of graphite on electric conductivity vol.49, pp.14, 2015, https://doi.org/10.1177/0021998314539366
  10. Characterization of the Polycaprolactam- or Polycaprolactone-Grafted Polyurethane and the Grafting Effect on Water Vapor Permeation and Tensile Strength pp.07306679, 2016, https://doi.org/10.1002/adv.21771
  11. Water-compatible, pH-sensitive, colour-changing polyurethane with low-temperature flexibility vol.133, pp.3, 2017, https://doi.org/10.1111/cote.12275
  12. Characterization of dimethylphenyl-grafted polyurethane: the impact on tensile and shape recovery properties vol.18, pp.10, 2017, https://doi.org/10.1007/s12221-017-7544-6
  13. Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane vol.74, pp.9, 2017, https://doi.org/10.1007/s00289-017-1916-3
  14. Grafting of niclosamide and salicylanilide onto hydrophilic polyurethane for the control of fungal and barnacle growth pp.1436-2449, 2019, https://doi.org/10.1007/s00289-018-2481-0
  15. Grafting of Triphenylmethyl Group onto Polyurethane and the Impact on the Shape Recovery and Flexibility at Extremely Low Temperature vol.19, pp.6, 2018, https://doi.org/10.1007/s12221-018-8082-6
  16. Functionalization and Chemical Linking of Reduced Graphene Oxide or Graphite onto Polyurethane and the Impact on the Tensile Strength and Sheet Resistance of Polymer Composites vol.26, pp.2, 2012, https://doi.org/10.1177/096739111802600202
  17. The effect of attached tetracycline and hydrophilic groups on the enhancement of antibacterial effectiveness and low temperature flexibility of polyurethane vol.30, pp.7, 2019, https://doi.org/10.1002/pat.4600
  18. The Preparation and Characterization of an Epoxy Polyurethane Hybrid Polymer Using Bisphenol A and Epichlorohydrin vol.21, pp.3, 2012, https://doi.org/10.1007/s12221-020-1239-0
  19. The grafted carbendazim and 2,4,6-tris(dimethylaminomethyl)phenyl group onto polyurethane to improve its antifungal effectiveness and hydrophilicity vol.78, pp.2, 2021, https://doi.org/10.1007/s00289-020-03126-2
  20. Synthesis and Characterization of N-Substituted Polyether-Block-Amide Copolymers vol.14, pp.4, 2012, https://doi.org/10.3390/ma14040773