DOI QR코드

DOI QR Code

Enhanced Tumor-targeted Gene Delivery by Immunolipoplexes Conjugated with the Humanized Anti-TAG-72 Fab' Fragments

  • Kim, Keun-Sik (Department of Biomedical Laboratory Science, Konyang University) ;
  • Park, Yong-Serk (Department of Biomedical Laboratory Science, Yonsei University) ;
  • Hong, Hyo-Jeong (Department of Systems Immunology, Kangwon National University) ;
  • Kim, Kwang-Pyo (Department of Molecular Biotechnology, Konkuk University) ;
  • Lee, Kwang-Hyun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Dong-Eun (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2012.01.06
  • Accepted : 2012.01.17
  • Published : 2012.02.20

Abstract

Cationic immunoliposomes were prepared by conjugation of Fab' fragments of the recombinant humanized monoclonal antibody (HuCC49) against tumor-associated glycoprotein (TAG)-72 to sterically unilamella liposomes. The cationic immunoliposomes are composed of cationic lipid (O,O'-dimyristyl-N-lysyl aspartate, DMKD), cholesterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)$_{2000}$] (DPPE-PEG-maleimide) with a molar ratio of 0.5:0.47:0.03. Plasmid DNA was effectively condensed by addition of transferrin (Tf) during the formation of anti-TAG-72 PEG-immunolipoplexes (PILPs). These anti-TAG-72 PILPs were able to adhere to the surface of TAG-72-overexepressing LS174T human colon cancer cells more effectively than conventional liposomes, thereby facilitating gene delivery in vitro. Furthermore, intravenous administration of the anti-TAG-72 PILPs into the tumor-carrying mice exhibited efficient localization of the reporter gene in the tumor tissues.

Keywords

References

  1. Fenske, D. B.; MacLachlan, I.; Cullis, P. R. Methods Enzymol. 2002, 346, 36. https://doi.org/10.1016/S0076-6879(02)46048-X
  2. McCormick, F. Nat. Rev. Cancer 2001, 1, 130. https://doi.org/10.1038/35101008
  3. Woodle, M. C.; Lasic, D. D. Biophys. Acta. 1992, 1113, 171. https://doi.org/10.1016/0304-4157(92)90038-C
  4. Pun, S. H.; Davis, M. E. Bioconjugate Chem. 2002, 9, 731.
  5. Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Biochim. Biophys. Acta. 1991, 1066, 29. https://doi.org/10.1016/0005-2736(91)90246-5
  6. Ogris, M.; Brunner, P.; Schuller, S.; Kircheis, R.; Wagner, E. Gene Ther. 1999, 6, 595. https://doi.org/10.1038/sj.gt.3300900
  7. Audouy, S.; de Leij, L.; Hoekstra, D.; Molema, G. Pharm. Res. 2002, 19, 1599. https://doi.org/10.1023/A:1020989709019
  8. Bendas, G. BioDrugs 2001, 15, 215. https://doi.org/10.2165/00063030-200115040-00002
  9. Sheer, D. G.; Schlom, J.; Cooper, H. L. Cancer Res. 1988, 48, 6811.
  10. Maruyama, K.; Takahashi, N.; TAGawa, T.; Nagaike, K.; Iwatsuru, M. FEBS. Letters 1997, 413, 177. https://doi.org/10.1016/S0014-5793(97)00905-8
  11. Mamot, C.; Drummond, D. C.; Nobel, C. O.; Kallab, V.; Guo, Z.; Hong, K. Cancer Res. 2005, 65, 11631. https://doi.org/10.1158/0008-5472.CAN-05-1093
  12. Maruyama, K. Biosci. Rep. 2002, 22, 251. https://doi.org/10.1023/A:1020138622686
  13. Kashmiri, S. V. S.; Shu, L.; Padlan, E. A.; Milenic, D. E.; Schlom, J.; Hand, P. H. Hybridoma 1995, 14, 461. https://doi.org/10.1089/hyb.1995.14.461
  14. Kim, K. S.; Park, Y. S. Oncol. Res. 2005, 15, 343. https://doi.org/10.3727/096504005776449707
  15. Song, Y. K.; Liu, F.; Liu, D. Hum. Gene Ther. 1997, 8, 1585. https://doi.org/10.1089/hum.1997.8.13-1585
  16. Shi, N.; Pardridge, W. M. Proc. Natl. Acad. Sci. USA 2000, 97, 7567. https://doi.org/10.1073/pnas.130187497
  17. Kim, K. S.; Lee, Y. K.; Kim, J. S.; Koo, K. H.; Hong, H. J.; Park, Y. S. Cancer Gene. Ther. 2008, 15, 331. https://doi.org/10.1038/cgt.2008.11
  18. Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H. Mol. Med. 2001, 7, 726.

Cited by

  1. Antiviral Efficacy of a Short PNA Targeting microRNA-122 Using Galactosylated Cationic Liposome as a Carrier for the Delivery of the PNA-DNA Hybrid to Hepatocytes vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.735
  2. Engineering liposomal nanoparticles for targeted gene therapy vol.24, pp.8, 2017, https://doi.org/10.1038/gt.2017.41
  3. Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery vol.11, pp.12, 2012, https://doi.org/10.1039/d0sc00078g