References
- Pedersen, F.; Bruijn, J. D.; Munn, S.; Leeuwen, K. V. Assessment of Additional Testing Needs Under REACH. Effects of (Q)SARS, Risk Based Testing and Voluntary Industry Initiatives; European Commission: 2003.
- Ankley, G. T.; Villeneuve, D. L. Aquat. Toxicol. 2006, 78(1), 91. https://doi.org/10.1016/j.aquatox.2006.01.018
- Casalegno, M.; Benfenati, E.; Sello, G. Chem. Res. Toxicol. 2005, 18(4), 740. https://doi.org/10.1021/tx049665v
- Martin, T. M.; Young, D. M. Chem. Res. Toxicol. 2001, 14(10), 1378. https://doi.org/10.1021/tx0155045
- Hoover, K. R.; Acree, W. E., Jr.; Abraham, M. H. Chem. Res. Toxicol. 2005, 18(9), 1497. https://doi.org/10.1021/tx050164z
- Gini, G.; Craciun, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2004, 44(6), 1897. https://doi.org/10.1021/ci0401219
- Mazzatorta, P.; Benfenati, E.; Neagu, C. D.; Gini, G. J. Chem. Inf. Comput. Sci. 2003, 43(2), 513. https://doi.org/10.1021/ci025585q
- Mazzatorta, P.; Benfenati, E.; Neagu, D.; Gini, G. J. Chem. Inf. Comput. Sci. 2002, 42(5), 1250. https://doi.org/10.1021/ci025520n
- Mazzatorta, P.; Vraèko, M.; Jezierska, A.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2003, 43(2), 485. https://doi.org/10.1021/ci0256182
- Papa, E.; Villa, F.; Gramatica, P. J. Chem. Inf. Model. 2005, 45(5), 1256. https://doi.org/10.1021/ci050212l
- Ren, S. Chemosphere 2003, 53(9), 1053. https://doi.org/10.1016/S0045-6535(03)00573-3
- Russom, C. L.; Bradbury, S. P.; Broderius, S. J.; Hammermeister, D. E.; Drummond, R. A. Environ. Toxicol. Chem. 1997, 16(5), 948. https://doi.org/10.1897/1551-5028(1997)016<0948:PMOTAF>2.3.CO;2
- Council Directive 92/32/EEC of 30 April 1992 amending for the seventh time Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. 1992; Vol. Off. J. L 154.
- EPA Fathead Minnow Acute Toxicity Database (EPAFHM). http:/ /www.epa.gov/ncct/dsstox/index.html. (accessed Apr., 2006).
- Lee, S. K.; Park, S. H.; Lee, I. H.; No, K. T. PreADMET 2.0; BMDRC: Seoul, Korea, 2007.
- Golbraikh, A.; Tropsha, A. Molecular Diversity 2000, 5(4), 231. https://doi.org/10.1023/A:1021372108686
- Riedmiller, M.; Braun, H. In A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm; Ruspini, H., Ed.; Proceedings of the IEEE International Conference on Neural Networks (ICNN) San Francisco: San Francisco, 1993; p 586.
- Cerius2, 4.1; Accelrys: San Diego, USA, 2005.
Cited by
- QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries vol.40, pp.2, 2014, https://doi.org/10.5668/JEHS.2014.40.2.105
- lazar: a modular predictive toxicology framework vol.4, pp.None, 2013, https://doi.org/10.3389/fphar.2013.00038
- A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas) vol.26, pp.3, 2012, https://doi.org/10.1080/1062936x.2015.1018938
- Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm vol.27, pp.7, 2012, https://doi.org/10.1080/1062936x.2016.1196388
- Improved building up a model of toxicity towards Pimephales promelas by the Monte Carlo method vol.48, pp.None, 2012, https://doi.org/10.1016/j.etap.2016.11.010
- QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database vol.53, pp.None, 2012, https://doi.org/10.1016/j.etap.2017.05.011
- [논문 철회] 노동자 건강보호를 위한 최신 유전독성학 연구전략 vol.44, pp.1, 2012, https://doi.org/10.5668/jehs.2018.44.1.31
- Machine learning-based prediction of toxicity of organic compounds towards fathead minnow vol.10, pp.59, 2020, https://doi.org/10.1039/d0ra05906d