DOI QR코드

DOI QR Code

Synthesis and Photoluminescence of Colloidal Solution Containing Layered Rare-earth Hydroxide Nanosheets

  • Lee, Byung-Il (Department of Applied Chemistry, College of Applied Science, Kyung Hee University) ;
  • Bae, Jung-Soo (Department of Applied Chemistry, College of Applied Science, Kyung Hee University) ;
  • Lee, Eun-Su (Department of Applied Chemistry, College of Applied Science, Kyung Hee University) ;
  • Byeon, Song-Ho (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
  • Received : 2011.10.15
  • Accepted : 2011.12.14
  • Published : 2012.02.20

Abstract

An aspect of organophilic modification for the delamination is described for the layered rare-earth hydroxides in this paper. The interlayer property of $RE_2(OH)_5NO_3{\cdot}nH_2O$, where RE=Eu (LEuH) and Tb (LTbH), was modified by the exchange reaction of nitrate ion with oleate anion that is one of the representative dispersion agents in nonpolar solvents. The bilayer arrangement of long oleate anions in the gallery of $RE_2(OH)_5NO_3{\cdot}nH_2O$ could effectively weaken the stacking of the hydroxide layers. Highly organophilic environment of the interlayer space promoted the introduction of toluene to delaminate the layered structure into their individual sheets. When irradiated with 365 nm UV, the resulting transparent colloidal solutions of toluene containing LEuH and LTbH nanosheets yielded typical red and green emissions, respectively, which are visible to the naked eye.

Keywords

References

  1. Jimenez de Haro, M. C.; Perez-Rodriguez, J. L.; Poyato, J.; Perez- Maqueda, L. A.; Ramirez-Valle, V.; Justo, A.; Lerf, A.; Wagner, F. E. Appl. Clay Sci. 2005, 30, 11. https://doi.org/10.1016/j.clay.2005.02.004
  2. Saunders, J. M.; Goodwin, J. W.; Richardson, R. M.; Vincent, B. J. Phys. Chem. B 1999, 103, 9211. https://doi.org/10.1021/jp9907185
  3. Thostenson, E. T.; Li, C.; Chou, T.-W. Composites Sci. Technol. 2005, 65, 491. https://doi.org/10.1016/j.compscitech.2004.11.003
  4. Tenne, R. Angew. Chem. Int. Ed. 2003, 4, 5124.
  5. Alberti, G.; Cavalaglio, S.; Dionigi, C.; Marmottini, F. Langmuir 2000, 16, 7663. https://doi.org/10.1021/la0006061
  6. Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Science 1989, 246, 369. https://doi.org/10.1126/science.246.4928.369
  7. Osada, M.; Sasaki, T. J. Mater. Chem. 2009, 19, 2503. https://doi.org/10.1039/b820160a
  8. Shukoor, M. I.; Therese, H. A.; Gorgishvili, L.; Glasser, G.; Kolb, U.; Tremel, W. Chem. Mater. 2006, 18, 2144. https://doi.org/10.1021/cm051685a
  9. Albiston, L.; Franklin, K. R.; Lee, E.; Smeulders, J. B. A. F. J. Mater. Chem. 1996, 6, 871. https://doi.org/10.1039/jm9960600871
  10. O' Leary, S.; O'Hare, D.; Seeley, G. Chem. Commun. 2002, 1506.
  11. Leroux, F.; Adachi-Pagano, M.; Intissar, M.; Chauviere, S.; Forano, C.; Besse, J. P. J. Mater. Chem. 2001, 11, 105. https://doi.org/10.1039/b002955f
  12. Adachi-Pagano, M.; Forano, C.; Besse, J. P. Chem. Commun. 2000, 91.
  13. Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki,T. J. Am. Chem. Soc. 2006, 128, 4872. https://doi.org/10.1021/ja0584471
  14. Wu, Q. L.; Olafsen, A.; Vistad, O. B.; Roots, J.; Norby, P. J. Mater. Chem. 2005, 15, 4695. https://doi.org/10.1039/b511184f
  15. Okamoto, K.; Sasaki, T.; Fujita, T.; Iyi, N. J. Mater. Chem. 2006, 16, 1608. https://doi.org/10.1039/b601346e
  16. Qiu, L.; Qu, B. J. Colloid Interface Sci. 2006, 301, 347. https://doi.org/10.1016/j.jcis.2006.05.049
  17. Moujahid, E. M.; Besse, J.-P.; Leroux, F. J. Mater. Chem. 2002, 12, 3324. https://doi.org/10.1039/b205837p
  18. Li, L.; Ma, R.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Commun. 2006, 3125.
  19. Gandara, F.; Perles, J.; Snejko, N.; Iglesias, M.; Gomez-Lor, B.; Gutierrez-Puebla, E.; Monge, M. A. Angew. Chem. Int. Ed. 2006, 45, 7998. https://doi.org/10.1002/anie.200602502
  20. McIntyre, L. J.; Jackson, L. K.; Fogg, A. M. Chem. Mater. 2008, 20, 335. https://doi.org/10.1021/cm7019284
  21. Lee, K.-H.; Byeon, S.-H. Eur. J. Inorg. Chem. 2009, 929.
  22. Poudret, L.; Prior, T. J.; McIntyre, L. J.; Fogg, A. M. Chem. Mater. 2008, 20, 7447. https://doi.org/10.1021/cm802301a
  23. Geng, F.; Matsushita, Y.; Ma, R.; Xin, H.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. J. Am. Chem. Soc. 2008, 130, 16344. https://doi.org/10.1021/ja807050e
  24. Geng, F.; Ma, R.; Sasaki, T. Acc. Chem. Res. 2010, 43, 1177. https://doi.org/10.1021/ar900289v
  25. Lee, B.-I.; Lee, K. S.; Lee, J. H.; Lee, I. S.; Byeon, S.-H. Dalton Trans. 2009, 2490.
  26. Lee, K.-H.; Byeon, S.-H. Eur. J. Inorg. Chem. 2009, 4727.
  27. Lee, K.-H.; Lee, B.-I.; You, J.-H.; Byeon, S.-H. Chem. Commun.2010, 46, 1461. https://doi.org/10.1039/b922612e
  28. Yoon, Y.-S.; Lee, B.-I.; Lee, K. S.; Im, G. H.; Byeon, S.-H.; Lee, J. H.; Lee, I. S. Adv. Funct. Mater. 2009, 19, 3375. https://doi.org/10.1002/adfm.200901051
  29. Birjega, R.; Pavel, O. D.; Costentin, G.; Che, M.; Angelescu, E. Appl. Catal. A 2005, 288, 185. https://doi.org/10.1016/j.apcata.2005.04.030
  30. Guo, Y.; Zhang, H.; Zhao, L.; Li, G. D.; Chen, J. S.; Xu, L. J. Solid State Chem. 2005, 178, 1830. https://doi.org/10.1016/j.jssc.2005.03.020
  31. Trujillano, R.; Holgado, M. J.; Pigazo, F.; Rives, V. Physica B 2006, 373, 267. https://doi.org/10.1016/j.physb.2005.11.154
  32. Kloprogge, J. T.; Frost, R. L. J. Solid State Chem. 1999, 146, 506. https://doi.org/10.1006/jssc.1999.8413
  33. Williams, G. R.; O'Hare, D. Solid State Sciences 2006, 8, 971. https://doi.org/10.1016/j.solidstatesciences.2006.02.048
  34. Li, B.; He, J. J. Phys. Chem. C 2008, 112, 10909. https://doi.org/10.1021/jp8039274
  35. Xu, Z. P.; Braterman, P. S. J. Mater. Chem. 2003, 13, 268. https://doi.org/10.1039/b207540g
  36. Carlino, S. Solid State Ionics 1997, 98, 73. https://doi.org/10.1016/S0167-2738(96)00619-4
  37. Xu, Z. P.; Braterman, P. S.; Yu, K.; Xu, H.; Wang, Y.; Brinker, C. J. Chem. Mater. 2004, 16, 2750. https://doi.org/10.1021/cm0497529
  38. Ida, S.; Shiga, D.; Koinuma, M.; Matsumoto, Y. J. Am. Chem. Soc. 2008, 130, 14038. https://doi.org/10.1021/ja804397n
  39. Blasse, G.; Grabmaier, B. C. Luminescence Materials; Springer: Berlin, Heidelberg, 1994.
  40. Judd, B. R. Phys. Rev. 1962, 127, 750. https://doi.org/10.1103/PhysRev.127.750
  41. Ofelt, G. S. J. Chem. Phys. 1962, 37, 511. https://doi.org/10.1063/1.1701366
  42. Vicentini, G.; Zinner, L. B.; Zukerman-Schpector, J.; Zinner, K. Coord. Chem. Rev. 2000, 196, 353. https://doi.org/10.1016/S0010-8545(99)00220-9

Cited by

  1. Hydrothermal-assisted exfoliation of Y/Tb/Eu ternary layered rare-earth hydroxides into tens of micron-sized unilamellar nanosheets for highly oriented and color-tunable nano-phosphor films vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-0828-0
  2. Layered Rare-Earth Hydroxide/Polyacrylamide Nanocomposite Hydrogels with Highly Tunable Photoluminescence vol.13, pp.23, 2017, https://doi.org/10.1002/smll.201604070
  3. Tunable photoluminescence from layered rare-earth hydroxide/polymer nanocomposite hydrogels by a cascaded energy transfer effect vol.5, pp.21, 2017, https://doi.org/10.1039/C7TC01246B
  4. -Dodecaborate Intercalated Yttrium Hydroxide as a First Example of Boron Cluster Anion-Containing Layered Inorganic Substances vol.56, pp.6, 2017, https://doi.org/10.1021/acs.inorgchem.6b02948
  5. Energy transfer between rare earths in layered rare-earth hydroxides vol.8, pp.7, 2018, https://doi.org/10.1039/C7RA12206C
  6. Structure, Delamination and Luminescence of Layered Dysprosium Hydroxides and the Generation of White Light with 2D Crystals vol.1, pp.1, 2012, https://doi.org/10.1002/slct.201500012
  7. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials vol.89, pp.None, 2020, https://doi.org/10.1070/rcr4920
  8. Layered Rare-Earth Hydroxide Unilameller Nanosheets: Synthesis, Characterization, and Adsorption vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/8923871
  9. Layered Rare Earth Hydroxides React with Formamide to Give [Ln(HCOO)3 · 2(HCONH2)] vol.66, pp.2, 2012, https://doi.org/10.1134/s0036023621020169