DOI QR코드

DOI QR Code

Preparation of Polyynes by the Laser Ablation of Graphite in Water and Organic Solvents

  • Received : 2011.11.02
  • Accepted : 2011.12.19
  • Published : 2012.02.20

Abstract

Polyynes were formed by laser ablation of a graphite target in deionized water ($H_2O$ and $D_2O$) and various organic solvents such as acetonitrile, n-hexane, and c-hexane and were identified by analyzing ultraviolet (UV) absorption and Raman spectra. We assigned the major UV absorption peaks that coincided with the electronic transitions corresponding to linear polyyne chains. The UV absorption peak intensities of a polyyne solution decreased as the holding temperature of the solution increased. Also, the absorption spectra of polyynes obtained by laser ablation of a graphite target at different volume fractions of $H_2O$ and $D_2O$ were examined.

Keywords

References

  1. Cataldo, F. Polyynes: Synthesis, Properties, and Applications; CRC Taylor & Francis: Boca Raton, FL, 2006.
  2. Thaddeus, P.; McCarthy, M. C. Spectrochim. Acta A 2001, 57, 757. https://doi.org/10.1016/S1386-1425(00)00442-X
  3. Ravagnan, L.; Siviero, F.; Lenardi, C.; Piseri, P.; Barborini, E.; Milani, P.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Phys. Rev. Lett. 2002, 89, 2855061.
  4. Sato, Y.; Kodama, T.; Shiromaru, H.; Sanderson, J. H.; Fujino, T.; Wada, Y.; Wakabayashi, T.; Achiba, Y. Carbon 2010, 48, 1673. https://doi.org/10.1016/j.carbon.2009.12.036
  5. Yang, S.; Kertesz, M. J. Phys. Chem. A 2006, 110, 9771. https://doi.org/10.1021/jp062701+
  6. Matsutani, R.; Ozaki, F.; Yamamoto, R.; Sanada, T.; Okada, Y.; Kojima, K. Carbon 2009, 47, 1659. https://doi.org/10.1016/j.carbon.2009.02.026
  7. Eastmond, R.; Johnson, T. R.; Walton, D. R. M. Tetrahedron 1972, 28, 4601. https://doi.org/10.1016/0040-4020(72)80041-3
  8. Tsuji, M.; Kuboyama, S.; Matsuzaki, T.; Tsuji, T. Carbon 2003, 41, 2141. https://doi.org/10.1016/S0008-6223(03)00241-0
  9. Wakisaka, A.; Gaumet, J. J.; Shimizu, Y.; Tamori, Y.; Sato, H.; Tokumaru, K. J. Chem. Soc. Faraday Trans. 1993, 89, 1001. https://doi.org/10.1039/ft9938901001
  10. Hu, A.; Sanderson, J.; Zaidi, A. A.; Wang, C.; Zhang, T.; Zhou, Y.; Duley, W. W. Carbon 2008, 46, 1823. https://doi.org/10.1016/j.carbon.2008.07.036
  11. Zaidi, A. A.; Hu, A.; Wesolowski, M. J.; Fu, X.; Sanderson, J. H.; Zhou, Y.; Duley, W. W. Carbon 2010, 48, 2517. https://doi.org/10.1016/j.carbon.2010.03.026
  12. Wesolowski, M. J.; Kuzmin, S.; Moores, B.; Wales, B.; Karimi, R.; Zaidi, A. A.; Leonenko, Z.; Sanderson, J. H.; Duley, W. W. Carbon 2011, 49, 625. https://doi.org/10.1016/j.carbon.2010.10.008
  13. Compagnini, G.; Mita, V.; Cataliotti, R. S.; D'Urso, L.; Puglisi, O. Carbon 2007, 45, 2456. https://doi.org/10.1016/j.carbon.2007.07.002
  14. Heath, J. R.; Zhang, Q.; O'Brien, S. C.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1987, 109, 359. https://doi.org/10.1021/ja00236a012
  15. Tsuji, M.; Tsuji, T.; Kuboyama, S.; Yoon, S. H.; Korai, Y.; Tsujimoto, T.; Kubo, K.; Mori, A.; Mochida, I. Chem. Phys. Lett. 2002, 355, 101. https://doi.org/10.1016/S0009-2614(02)00192-6
  16. Cataldo, F. Carbon 2004, 42, 129. https://doi.org/10.1016/j.carbon.2003.10.016
  17. Tabata, H.; Fujii, M.; Hayashi, S.; Doi, T.; Wakabayashi, T. Carbon 2006, 44, 3168. https://doi.org/10.1016/j.carbon.2006.07.004
  18. Compagnini, G.; Mita, V.; D'Urso, L.; Cataliotti, R. S.; Puglisi, O. J. Raman Spectrosc. 2008, 39, 177. https://doi.org/10.1002/jrs.1837
  19. Cataldo, F. Polym. Int. 1999, 48, 15. https://doi.org/10.1002/(SICI)1097-0126(199901)48:1<15::AID-PI85>3.0.CO;2-#
  20. Shin, S. K.; Song, J. K.; Park, S. M. Appl. Surf. Sci. 2011, 257, 5156. https://doi.org/10.1016/j.apsusc.2010.10.074
  21. Casari, C. S.; Bassi, A. L.; Ravagnan, L.; Siviero, F.; Lenardi, C.; Piseri, P.; Bongiorno, G.; Bottani, C. E.; Milani, P. Phys. Rev. B 2004, 69, 075422. https://doi.org/10.1103/PhysRevB.69.075422

Cited by

  1. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots vol.6, pp.4, 2014, https://doi.org/10.1039/C3NR05572H
  2. Laser ablation in an ambient gas: Modelling and experiment vol.123, pp.8, 2018, https://doi.org/10.1063/1.5010413
  3. Pseudocarbynes: Linear Carbon Chains Stabilized by Metal Clusters vol.124, pp.35, 2012, https://doi.org/10.1021/acs.jpcc.0c05014
  4. In situ synthesis of polyynes in a polymer matrix via pulsed laser ablation in a liquid vol.1, pp.8, 2020, https://doi.org/10.1039/d0ma00545b