DOI QR코드

DOI QR Code

Hyperpolarized 129 NMR Study of TiO2 Nanotubes

  • Lee, Sang-Man (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Soon-Chang (Energy & Applied Nano Material Research Team, Korea Basic Science Institute) ;
  • Mehrotra, Vandana (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Hae-Jin (Energy & Applied Nano Material Research Team, Korea Basic Science Institute) ;
  • Lee, Hee-Cheon (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2011.11.19
  • Accepted : 2011.12.07
  • Published : 2012.02.20

Abstract

A continuous flow hyperpolarized (HP) $^{129}Xe$ NMR spectroscopy was employed for the first time to investigate $TiO_2$ nanotubes (Ti-NTs) synthesized from commercial nanoparticles with different reaction times. A single peak attributing to channels for Ti-NTs was observed for variable temperature HP $^{129}Xe$ NMR spectra. It was also noted that there is alteration in value for heat of adsorption, ${\Delta}H$ from $12.6{\pm}1.3$ to $16.4{\pm}0.4kJ/mol$ and variation in chemical shift of the xenon adsorbed in channels, ${\delta}_s$ from $120{\pm}2\sim135{\pm}9ppm$ which were closely correlated to channel length and it was shown that P25-24 Ti-NTs with longest channel is most favorite Ti-NTs for Xe adsorption.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160. https://doi.org/10.1021/la9713816
  3. Shamsi, M. H.; Geckeler, K. E. Nanotechnology 2008, 19, 5.
  4. Ou, H. H.; Lo, S. L. Separation and Purification Technology 2007, 58, 179. https://doi.org/10.1016/j.seppur.2007.07.017
  5. Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Gratzel, M. ACS Nano 2008, 2, 1113. https://doi.org/10.1021/nn800174y
  6. Xu, J.; Jia, C.; Cao, B.; Zhang, W. F. Electrochimica Acta 2007,52, 8044. https://doi.org/10.1016/j.electacta.2007.06.077
  7. Seo, M. H.; Yuasa, M.; Kida, T.; Huh, J. S.; Yamazoe, N.; Shimanoe, K. Sensors and Actuators B: Chemical 2011, 154, 251. https://doi.org/10.1016/j.snb.2010.01.069
  8. Jun, Y.; Zarrin, H.; Fowler, M.; Chen, Z. International Journal of Hydrogen Energy 2011, 36, 6073. https://doi.org/10.1016/j.ijhydene.2011.02.030
  9. Springuel-Huet, M.; Bonardet, J. L.; Fraissard, J. Applied Magnetic Resonance 1995, 8, 427. https://doi.org/10.1007/BF03162656
  10. Long, H. W.; Gaede, H. C.; Shore, J.; Reven, L.; Bowers, C. R.; Kritzenberger, J.; Pietrass, T.; Pines, A.; Tang, P.; Reimer, J. A. Journal of the American Chemical Society 1993, 115, 8491. https://doi.org/10.1021/ja00071a086
  11. Wang, L. Q.; Wang, D.; Liu, J.; Exarhos, G. J.; Pawsey, S.; Moudrakovski, I. The Journal of Physical Chemistry C 2009, 113, 6577. https://doi.org/10.1021/jp809740e
  12. Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Journal of Catalysis 2001, 203, 82. https://doi.org/10.1006/jcat.2001.3316
  13. Yuan, Z. Y.; Su, B. L. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 241, 173. https://doi.org/10.1016/j.colsurfa.2004.04.030
  14. Fukutomi, J.; Suzuki, E.; Shimizu, T.; Kimura, A.; Fujiwara, H. Journal of Magnetic Resonance 2003, 160, 26. https://doi.org/10.1016/S1090-7807(02)00132-5
  15. Suzuki, Y.; Yoshikawa, S. Journal of Materials Research 2004, 19, 982. https://doi.org/10.1557/JMR.2004.0128
  16. Bavykin, D. V.; Walsh, F. C. J. Phys. Chem. C 2007, 111, 14644. https://doi.org/10.1021/jp073799a
  17. Wang, D.; Zhou, F.; Liu, Y.; Liu, W. Materials Letters 2008, 62, 1819. https://doi.org/10.1016/j.matlet.2007.10.011
  18. Bavykin, D. V.; Walsh, F. C. J. Phys. Chem. C 2007, 111, 14644. https://doi.org/10.1021/jp073799a
  19. Andrei, N.; Haddad, E.; Flavien, G.; Antoine, G. Phys. Chem. Chem. Phys. 2003, 5, 4473. https://doi.org/10.1039/b305788g
  20. Romanenko, K. V.; Fonseca, A.; Dumonteil, S.; Nagy, J. B.; d'Espinose de Lacaillerie, J. B.; Lapina, O. B.; Fraissard, J. Solid State Nuclear Magnetic Resonance 2005, 28, 135. https://doi.org/10.1016/j.ssnmr.2005.07.004

Cited by

  1. A method for calibrating coil constants by using an atomic spin co-magnetometer vol.70, pp.10, 2016, https://doi.org/10.1140/epjd/e2016-70091-y