DOI QR코드

DOI QR Code

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine

  • Jo, Mi-Young (Department of Polymer Engineering, Pukyong National University) ;
  • Lim, Youn-Hee (Samsung Advanced Institute and Technology) ;
  • Ahn, Byung-Hyun (Division of Advanced Materials and Engineering, Pukyong National University) ;
  • Lee, Gun-Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Kim, Joo-Hyun (Department of Polymer Engineering, Pukyong National University)
  • Received : 2011.10.07
  • Accepted : 2011.12.05
  • Published : 2012.02.20

Abstract

A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).

Keywords

References

  1. Heeger, A. J. Angew. Chem.: Int. Ed. 2001, 40, 2591. https://doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
  2. McDiarmid, A. G. Angew. Chem.: Int. Ed. 2001, 40, 2581. https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  3. Friend, R. H.; Gymer, R. W. ; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C., Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121. https://doi.org/10.1038/16393
  4. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.: Int. Ed. 1998, 37, 402. https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  5. Yu, G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510. https://doi.org/10.1063/1.359792
  6. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature (London) 1995, 376, 498. https://doi.org/10.1038/376498a0
  7. Arias, A. C.; MacKenzie, J. D.; Stevenson, R.; Halls, J. J. M.; Inbasekaran, M.; Woo, E. P.; Richards, D.; Friend, R. H. Macromolecules 2001, 34, 6005. https://doi.org/10.1021/ma010240e
  8. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108. https://doi.org/10.1063/1.117834
  9. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741. https://doi.org/10.1126/science.280.5370.1741
  10. Babel, A.; Jenekhe, S. A. Adv. Mater. 2002, 14, 371. https://doi.org/10.1002/1521-4095(20020304)14:5<371::AID-ADMA371>3.0.CO;2-5
  11. Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2002, 106, 6129. https://doi.org/10.1021/jp020695l
  12. Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749. https://doi.org/10.1021/jp0215062
  13. Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759. https://doi.org/10.1021/ma034717t
  14. Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 2101. https://doi.org/10.1021/cm9801237
  15. Fungo, F.; Jenekhe, S. A.; Bard, A. J. Chem. Mater. 2003, 15, 1264. https://doi.org/10.1021/cm0210445
  16. Sen, L.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2000, 33, 3514. https://doi.org/10.1021/ma0002038
  17. Jiang, X.; Sen, L.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Appl. Phys. Lett. 2000, 76, 2985. https://doi.org/10.1063/1.126553
  18. Kim, J. H.; Liu, S.; Jen, A. K.-Y.; Carlson, B.; Dalton, L. R.; Shu,C.-F.; Dodda, R. Appl. Phys. Lett. 2003, 83, 776. https://doi.org/10.1063/1.1593230
  19. Kim, J. H.; Herguth, P.; Kang, M.-S.; Tseng, Y.-H.; Shu, C.-F. Appl. Phys. Lett. 2004, 85, 1116. https://doi.org/10.1063/1.1778472
  20. Niu, Y.-H.; Liu, M. S.; Ka, J.-W.; Jen, A. K.-Y. Appl. Phys. Lett. 2006, 88, 0933505.
  21. Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K.-Y. Macromolecules 2008, 41, 9570. https://doi.org/10.1021/ma801374w
  22. Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.-N.; Huang, F.; Ka, J.- W.; Yip, H.-L.; Jen, A. K.-Y. Chem. Mater. 2008, 20, 413. https://doi.org/10.1021/cm071828o
  23. Jung, M. S.; Shin, W.; Park, S. J.; You, ; Park, J. B.; Suh, H.; Lim, Y.; Yoon, D. Y.; Kim, J. H. Synth. Met. 2009, 159, 1928. https://doi.org/10.1016/j.synthmet.2009.05.034
  24. Lim, Y.; Park, Y.-S.; Kang, Y.; Jang, D. Y.; Kim, J. H.; Kim, J.-J.; Sellinger, A.; Yoon, D. Y. J. Am. Chem. Soc. 2011, 133, 1375. https://doi.org/10.1021/ja1061517
  25. Kong, X.; Kulkarni, P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992. https://doi.org/10.1021/ma035087y
  26. Wu, T.-Y.; Chen, Y. J. Polym. Sci.; Part A 2002, 40, 4452. https://doi.org/10.1002/pola.10530
  27. Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2002, 35, 6094. https://doi.org/10.1021/ma020405z

Cited by

  1. Synthesis and characterization of thermally cross-linkable trimer based on triphenylamine vol.21, pp.3, 2013, https://doi.org/10.1007/s13233-013-1116-4