DOI QR코드

DOI QR Code

Charge Transport Properties of Polyaniline-gold/graphite Oxide Composite Films

  • Basavaraja, C. (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Won-Jung (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Thinh, P.X. (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Science, Inje University)
  • Received : 2011.09.23
  • Accepted : 2011.11.29
  • Published : 2012.02.20

Abstract

A polyaniline-gold composite was prepared via the polymerization of aniline hydrochloride with or without water-soluble graphite oxide using auric acid as an oxidant. The reaction products were characterized using Xray photoelectron spectroscopy. The thermal stability and embedded crystallinity of the composites were also investigated using thermogravimetric and X-ray diffraction analyses. The electrical properties of the composites were examined using cyclic voltammetric measurements at room temperature and temperature-dependent DC conductivity within 300-500 K. Compared to pure graphene oxide and polyaniline-gold composite, the polyaniline-gold-graphene composite exhibited higher crystallinity and thermal stability, and higher current density response under equivalent conditions.

Keywords

References

  1. Cao, Y.; Mallouk, T. E. Chem. Mater. 2008, 20, 5260. https://doi.org/10.1021/cm801028a
  2. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4(4), 1963. https://doi.org/10.1021/nn1000035
  3. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Huh, D. S. J. Polym. Res. 2010, 17, 861. https://doi.org/10.1007/s10965-009-9378-4
  4. Liu, D. Y.; Reynolds, J. R. ACS Appl. Mater. Interfaces 2010, 2(12), 3586. https://doi.org/10.1021/am1007744
  5. Jang, J.; Bae, J.; Choi, M.; Yoon, S. H. Carbon 2005, 43, 2730. https://doi.org/10.1016/j.carbon.2005.05.039
  6. Cao, Y.; Mallouk, T. E. Chem. Mater. 2008, 20, 5260. https://doi.org/10.1021/cm801028a
  7. Tung, N. T.; Khai, T. V.; Jeon, M.; Lee, Y. J.; Chung, H.; Bang, J. H.; Sohn, D. Macromol. Res. 2011, 19(2), 203. https://doi.org/10.1007/s13233-011-0216-2
  8. Swami, A.; Kumar, A.; Selvakannan, P.; Mandal, S.; Pasricha, R.; Sastry, M. Chem. Mater. 2003, 15, 17. https://doi.org/10.1021/cm0256920
  9. Jordan, R.; West, N.; Ulman, A.; Chou, Y. M.; Nuyken, O. Macromolecules 2001, 34, 1606. https://doi.org/10.1021/ma001615j
  10. Selvan, S. T.; Spatz, J. P.; Klok, H. A.; Moller, M. Adv. Mater. 1998, 10, 132. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<132::AID-ADMA132>3.0.CO;2-Y
  11. Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2000, 12, 1102. https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
  12. Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Mochrie, S. G. J.; Lurio, L. B.; Ruhm, A.; Lennox, R. B. J. Am. Chem. Soc. 2001, 123, 10411. https://doi.org/10.1021/ja0166287
  13. Mallick, K.; Witcomb, M. J.; Scurrell, M. S.; Strydom, A. M. Gold Bulletin 2008, 41(3), 246. https://doi.org/10.1007/BF03214877
  14. Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater. 2010, 22, 1392. https://doi.org/10.1021/cm902876u
  15. Kim, H.; Abdala, A. A.; Macosko, C. W. Macromolecules 2010, 43, 6515. https://doi.org/10.1021/ma100572e
  16. Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Carbon 2010, 47, 68.
  17. Cote, L. J.; Silva, R. C.; Huang, J. J. Am. Chem. Soc. 2009, 131(31), 11027. https://doi.org/10.1021/ja902348k
  18. Basavaraja, C.; Kim, W. J.; Kim, Y. D.; Huh, D. S. Mater. Lett. 2011, 65, 3120. https://doi.org/10.1016/j.matlet.2011.06.110
  19. Basavaraja, C.; Kim, W. J.; Kim, D. G.; Huh, D. S. Mater. Phys. Chem. 2011, 129, 787. https://doi.org/10.1016/j.matchemphys.2011.05.057
  20. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh, D. S. J. Polym. Sci. B: Polym. Phys. 2009, 47, 36. https://doi.org/10.1002/polb.21611
  21. Waltman, R. J.; Pacansky, J.; Bates, C. W. J. Chem. Mater. 1993, 5(12), 1799. https://doi.org/10.1021/cm00036a018
  22. Liu, Z.; Wang, Z. M.; Yang, X.; Ooi, K. Langmuir 2002, 18, 4926. https://doi.org/10.1021/la011677i
  23. Park, S.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S. J. Phys. Chem. C 2009, 113, 15801. https://doi.org/10.1021/jp907613s
  24. Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; Macdiarmid, A. G. Macromolecules 1991, 24, 779. https://doi.org/10.1021/ma00003a022
  25. Joint Committee on Powder Diffraction Standards, Diffraction data file: JCPDS International Center for Diffraction Data: Swarthmore, PA 1991.
  26. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723. https://doi.org/10.1021/la960445u
  27. Moon, Y. B.; Cao, Y.; Smith, P.; Heeger, A. J. Polymer Commun. 1989, 30, 196.
  28. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano 2008, 2, 463. https://doi.org/10.1021/nn700375n
  29. Yang, X.; Zhang, X.; Ma, Y.; Yi, H.; Wang, Y.; Chen, Y. J. Mater. Chem. 2009, 19, 2710. https://doi.org/10.1039/b821416f
  30. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723. https://doi.org/10.1021/la960445u

Cited by

  1. Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites vol.11, pp.1, 2015, https://doi.org/10.1007/s13391-014-4200-9