DOI QR코드

DOI QR Code

Bayberry Tannin as Stabilizer for the Synthesis of Highly Active and Reusable Heterogeneous Pd Catalysts and Their Application in the Catalytic Hydrogenation of Olefins

  • Chen, Chen (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Lv, Guang (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Huang, Xin (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Liao, Xue Pin (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Zhang, Wen Hua (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Shi, Bi (National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University)
  • Received : 2011.08.13
  • Accepted : 2011.11.23
  • Published : 2012.02.20

Abstract

In this study, the homogenous Pd nanoparticles (Pd NPs) were first prepared with bayberry tannin (BT) as the stabilizers. Subsequently, the obtained bayberry tannin-stabilized Pd nanoparticles (BT-Pd) were immobilized onto ${\gamma}-Al_2O_3$ to prepare heterogeneous ${\gamma}-Al_2O_3$-BT-Pd catalysts. Fourier Transformation Infrared Spectrum (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses confirmed that the Pd NPs were well stabilized by the phenolic hydroxyl groups of BT. Transmission Electron Microscopy (TEM) observation indicated that the diameter of the Pd NPs can be effectively controlled in the range of 4.2-16.0 nm by varying the amount of BT. It is found that the ${\gamma}-Al_2O_3$-BT-Pd catalysts exhibit highly activity for various olefin hydrogenations. For example, the initial TOF (turnover frequency) of the ${\gamma}-Al_2O_3$-BT-Pd in the allyl alcohol hydrogenation is as high as $12804 mol{\cdot}mol^{-1}{\cdot}h^{-1}$. Furthermore, the ${\gamma}-Al_2O_3$-BT-Pd can be reused 5 times without significant loss of activity, exhibiting a superior reusability as compared with conventionally prepared ${\gamma}-Al_2O_3$-Pd catalysts.

Keywords

References

  1. Kim, S. W.; Park, J. N.; Jang, Y. J.; Chung, Y. H.; Hwang, S. J.; Hyeon, T. H.; Kim, Y. W. Nanolett. 2003, 3, 1289. https://doi.org/10.1021/nl0343405
  2. Lee, K. Y.; Byeon, H. S.; Yang, J. K.; Cheong, G. W.; Han, S. W. Bull. Korean Chem. Soc. 2007, 28, 880. https://doi.org/10.5012/bkcs.2007.28.5.880
  3. Kim, Y. W.; Kim, M. J. Bull. Korean Chem. Soc. 2010, 31, 1368. https://doi.org/10.5012/bkcs.2010.31.5.1368
  4. Jiang, Y. J.; Gao, Q. M. J. Am. Chem. Soc. 2008, 128, 716. https://doi.org/10.1021/ja056424g
  5. Wang, Z. J.; Liu, Y.; Shi, P.; Liu, C. J.; Liu, Y. Appl. Catal. B 2009, 90, 570. https://doi.org/10.1016/j.apcatb.2009.04.012
  6. Wang, H. Y.; Wan, Y. J. Mater. Sci. 2009, 44, 6553. https://doi.org/10.1007/s10853-009-3612-7
  7. Okhlopkova, L. B.; Lisitsyn, A. S.; Likholobov, V. A.; Gurrath, M.; Boehmbet, H. P. Appl. Catal. A 2000, 204, 229. https://doi.org/10.1016/S0926-860X(00)00534-2
  8. Guczi, L.; Beck, A.; Horvtáh, A.; Horvath, D. Top. Catal. 2002, 19, 157. https://doi.org/10.1023/A:1015216205320
  9. Huang, X.; Li, L.; Liao, X. P.; Shi, B. J. Mol. Catal. A: Chem. 2010, 320, 40. https://doi.org/10.1016/j.molcata.2009.12.013
  10. Choo, H. P.; He, B. L.; Liew, K. Y.; Liu, H. F.; Li, J. L. J. Mol. Catal. A: Chem. 2006, 244, 217. https://doi.org/10.1016/j.molcata.2005.09.009
  11. Schofield, P.; Mbugua, D. M.; Pell, A. N. Anim. Feed. Sci. Technol. 2001, 91, 21. https://doi.org/10.1016/S0377-8401(01)00228-0
  12. Ma, H. W.; Liao, X. P.; Liu, X.; Shi, B. J. Membr. Sci. 2006, 278, 373. https://doi.org/10.1016/j.memsci.2005.11.022
  13. Huang, X.; Mao, H.; Liao, X. P.; Shi, B. Catal. Commun. 2011, 12, 1000. https://doi.org/10.1016/j.catcom.2011.03.008
  14. Lang, Y. Q.; Wang, Q. Q.; Xing, J. M.; Zhang, B.; Liu, H. Z. AICHE. J. 2008, 54, 2303. https://doi.org/10.1002/aic.11553
  15. Sanz, J. F.; Rabaa, H.; Poveda, F. M.; Marquez, M. A.; Calzado, C. J. Int. J. Quantum. Chem. 1998, 70, 359. https://doi.org/10.1002/(SICI)1097-461X(1998)70:2<359::AID-QUA12>3.0.CO;2-7
  16. Liao, X. P.; Ma, H. W.; Wang, R.; Shi, B. J. Membr. Sci. 2004, 243, 235. https://doi.org/10.1016/j.memsci.2004.06.025
  17. Leofanti, G.; Padovan, M.; Tozzola, V.; Venturelli, B. Catal. Today. 1998, 41, 207. https://doi.org/10.1016/S0920-5861(98)00050-9
  18. Ozacar, M.; Soykan, C.; Sengil, . A. Chem. Eng. J. 2008, 143, 32. https://doi.org/10.1016/j.cej.2007.12.005
  19. Nakano, Y.; Takeshita, K.; Tsutsumi, T. Water Res. 2001, 35, 496. https://doi.org/10.1016/S0043-1354(00)00279-7
  20. Oo, C. W.; Kassim, M. J.; Pizzi, A. Ind. Crops. Prod. 2009, 30, 152. https://doi.org/10.1016/j.indcrop.2009.03.002
  21. Wakayama, H.; Setoyama, N.; Fukushima, Y. Adv. Mater. 2003, 15, 742. https://doi.org/10.1002/adma.200304408
  22. Wu, H.; Zhuo, L. W.; He, Q.; Liao, X. P.; Shi, B. Appl. Catal. A 2009, 366, 44. https://doi.org/10.1016/j.apcata.2009.06.024
  23. Scott, R. W. J.; Datye, A. K.; Crooks, R. M. J. Am. Chem. Soc. 2003, 125, 3708. https://doi.org/10.1021/ja034176n
  24. Ooe, M.; Murata, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 1604. https://doi.org/10.1021/ja038455m

Cited by

  1. A ternary Rh complex catalyst highly active and stable in the hydrogenation of acrylonitrile–butadiene rubber vol.39, pp.3, 2015, https://doi.org/10.1039/C4NJ01627K
  2. Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs vol.7, pp.19, 2015, https://doi.org/10.1039/C4NR06567K
  3. Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities vol.4, pp.1, 2017, https://doi.org/10.1002/cben.201600017
  4. Recyclable Amphiphilic Metal Nanoparticle Colloid Enabled Atmospheric Oxidation of Alcohols vol.10, pp.40, 2012, https://doi.org/10.1021/acsami.8b12989
  5. Heterogeneous Palladium Catalysts in the Hydrogenation of the Carbon-carbon Double Bond vol.25, pp.2, 2012, https://doi.org/10.2174/1385272824999201202084812