DOI QR코드

DOI QR Code

Highly Selective Amination of o- and p-Alkyl Phenols over Pd/Al2O3-BaO

  • Ma, Jianchao (School of Chemical Engineering and Technology, Tianjin University) ;
  • Wang, Huabang (School of Chemical Engineering and Technology, Tianjin University) ;
  • Sun, Meng (School of Chemical Engineering and Technology, Tianjin University) ;
  • Yang, Fan (School of Chemical Engineering and Technology, Tianjin University) ;
  • Wu, Zhiwei (School of Chemical Engineering and Technology, Tianjin University) ;
  • Wang, Donghua (School of Pharmaceutical Science and Technology, Tianjin University) ;
  • Chen, Ligong (School of Chemical Engineering and Technology, Tianjin University)
  • Received : 2011.10.14
  • Accepted : 2011.11.23
  • Published : 2012.02.20

Abstract

A series of Pd-based catalysts were prepared and examined for the amination of 2,6-dimethylphenol in a fixedbed reactor. The best results were obtained for Pd/$Al_2O_3$-BaO with a conversion of 99.89% and a selectivity of 91.16%. These catalysts were characterized using BET, XRD, XPS, TEM and $NH_3$-TPD. Doped BaO not only improved the dispersion of the Pd particles but also decreased the acidity of the catalyst, which remarkably enhanced the selectivity and stability of the catalyst. The generality of Pd/$Al_2O_3$-BaO for this kind of reaction was demonstrated by catalytic aminations of o- and p-alkyl phenols.

Keywords

References

  1. Tafesh, A. M.; Weiguny, J. Chem. Rev. 1996, 96, 2035. https://doi.org/10.1021/cr950083f
  2. Downing, R. S.; Kunkeler, P. J.; Bekkum, H. van. Catal. Today. 2004, 37, 121. https://doi.org/10.1016/S0920-5861(97)00005-9
  3. Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 919. https://doi.org/10.1021/jo005666q
  4. Borodkin, G. I.; Elanov, I. R.; Shubin, V. G. Russ. J. Org. Chem. 2009, 45, 934. https://doi.org/10.1134/S1070428009060220
  5. Sreedhar, B.; Keerthi, D. D.; Yada, D. Catal. Commun. 2011, 12, 1009. https://doi.org/10.1016/j.catcom.2011.02.027
  6. Ono, Y.; Ishida, H. J. Catal. 1981, 72, 121. https://doi.org/10.1016/0021-9517(81)90083-X
  7. Norbert, G.; Peter, J.; Leopold, H.; Herbert, T.; Wolfgang, R. EP 53819, 1982.
  8. Norbert, G.; Leopold, H.; Wolfgang, F.; Wolfgang, R.; Wolfgang, K. EP 167996, 1986.
  9. Mannheim, U. K.; Kleinniedesheim, P. F.-F.; Heidelberg, M. I.; Frankenthal, J. W.-D.; Schifferstadt, M. H.; Weinheim, P. P. US 5663438, 1997.
  10. Liu, Z. L.; Liao, W. W.; Wang, Y.; Tan, W. N.; Chen, P. Chin. Pestic. Intermediat. 2006, 200.
  11. Mannheim, U. K.; Kleinniedesheim, P. F.-F.; Heidelberg, M. I.; Frankenthal, J. W.-D.; Schifferstadt, M. H.; Weinheim, P. P. US 5663438, 2008.
  12. Jiang, R. X.; Xie, Z. K.; Zhang, C. F.; Yang, Y. Q.; Chen, Q. L. React. Kinet. Catal. Lett. 2005, 84, 215. https://doi.org/10.1007/s11144-005-0212-7
  13. Jiang, R. X.; Xie, Z. K.; Zhang, C. F.; Chen, Q. L. Appl. Catal. A Gen. 2003, 250, 209. https://doi.org/10.1016/S0926-860X(03)00238-2
  14. Jiang, R. X.; Xie, Z. K.; Zhang, C. F.; Chen, Q. L. Catal. Today 2004, 93-95, 359. https://doi.org/10.1016/j.cattod.2004.06.024
  15. Wang, S. P.; Zhang, G. L.; Ma, X. B. Chin. Analysis. Lab. 2008, 27, 282.
  16. Zhang, X. Y.; Long, E. Y.; Li, Y. L.; Zhang, L. J.; Guo, J. X.; Gong, M. C.; Chen, Y. Q. J. Mol. Catal. A: Chem. 2009, 238, 73.
  17. Perez, Yolanda; Fajardo, Mariano; Corma Avelino. Catal. Commun. 2011, 12, 1074.
  18. Lin, Y.; Zhang, Z. T.; Tang, Z. L.; Zhang, J.; Zheng, Z. S.; Lu, X. Mater. Chem. Phys. 2001, 70, 156. https://doi.org/10.1016/S0254-0584(00)00500-9
  19. Ravichandran, D.; Johnson, S. T.; Erdei, S.; Roy, R.; White, W. B. Displays 1999, 19, 197. https://doi.org/10.1016/S0141-9382(98)00050-X
  20. Klingstedt, F.; Kalantar, K. H.; Neyestanaki, A.; Lindfors, L.-E.; Salmi, T.; Vayrynen, J. J. Catal. 2002, 206, 248. https://doi.org/10.1006/jcat.2001.3505
  21. Zhang, X. Y.; Long, E. Y.; Li, Y. L.; Zhang, L. J.; Guo, J. X.; Gong, M. C.; Chen, Y. Q. J. Mol. Catal. A Chem. 2009, 308, 73. https://doi.org/10.1016/j.molcata.2009.03.028
  22. Kobayashi, T.; Yamada, T.; Kayano, K. Appl. Catal. B Environ. 2001, 30, 287. https://doi.org/10.1016/S0926-3373(00)00240-X
  23. Yu, Ch. L.; Ge, Q.; Xu, H.; Li, W. Appl. Catal. A Gen. 2006, 315, 58. https://doi.org/10.1016/j.apcata.2006.08.038
  24. Ma, D.; Zhang, W. P.; Shu, Y. Y.; Liu, X. M.; Xu, Y. D.; Bao, X. H. Catal. Lett. 2000, 66, 155. https://doi.org/10.1023/A:1019099607029
  25. Wang, H. L.; Xin, W. Y. Catal. Lett . 2001, 76, 3.
  26. Chary, K. V. R.; Seela, K. K.; Naresh, D.; Ramakanth, P. Catal. Commun. 2008, 9, 75. https://doi.org/10.1016/j.catcom.2007.05.016
  27. Scire, S.; Minico, S.; Crisafulli, C. Appl. Catal. A Gen. 2002, 235, 21. https://doi.org/10.1016/S0926-860X(02)00237-5

Cited by

  1. Catalytic amination of 2,6-dimethylphenol to 2,6-dimethylaniline over Ni–Cu–Cr/γ-Al2O3 vol.39, pp.3, 2013, https://doi.org/10.1007/s11164-012-0672-0
  2. Compositional and structural feedstock requirements of a liquid phase cellulose-to-naphtha process in a carbon- and hydrogen-neutral biorefinery context vol.18, pp.20, 2016, https://doi.org/10.1039/C6GC01644H
  3. Bio-based amines through sustainable heterogeneous catalysis vol.19, pp.22, 2017, https://doi.org/10.1039/C7GC02299A
  4. Direct liquid-phase phenol-to-aniline amination using Pd/C vol.8, pp.10, 2018, https://doi.org/10.1039/C8CY00193F
  5. Construction of 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole over Pd/γ-Al2O3 by a Continuous Process vol.3, pp.8, 2012, https://doi.org/10.1021/acssuschemeng.5b00507
  6. Recent Advances of Producing Biobased N-Containing Compounds via Thermo-Chemical Conversion with Ammonia Process vol.34, pp.9, 2012, https://doi.org/10.1021/acs.energyfuels.0c01993