DOI QR코드

DOI QR Code

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming (School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhao, Hui (School of Chemical and Material Engineering, Jiangnan University) ;
  • Wang, Zhiliang (Key Laboratory of Environmental Engineering of Jiangsu Province, Jiangsu Academy of Environmental Science) ;
  • Wang, Guangli (School of Chemical and Material Engineering, Jiangnan University) ;
  • He, Aizhen (School of Chemical and Material Engineering, Jiangnan University) ;
  • Jiang, Pingping (School of Chemical and Material Engineering, Jiangnan University)
  • Received : 2011.08.24
  • Accepted : 2011.11.21
  • Published : 2012.01.20

Abstract

ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

Keywords

References

  1. Moussavi, G.; Khavanin, A.; Alizadeh, R. Appl. Catal., B: Environ. 2010, 97, 160. https://doi.org/10.1016/j.apcatb.2010.03.036
  2. Lv, A. H.; Hu, C.; Nie, Y. L.; Qu, J. H. Appl. Catal., B: Environ. 2010, 100, 62. https://doi.org/10.1016/j.apcatb.2010.07.011
  3. Yang, L.; Hu, C.; Nie, Y. L.; Qu, J. H. Environ. Sci. Technol. 2009, 43, 2525. https://doi.org/10.1021/es803253c
  4. Martins, R. C.; Quinta-Ferreira, R. M. Desalination 2011, 270, 90. https://doi.org/10.1016/j.desal.2010.11.026
  5. Dong, Y. M.; Wang, G. L.; Jiang, P. P.; Zhang, A. M.; Yue, L.; Zhang, X. M. Bull. Korean Chem. Soc. 2010, 31, 2830. https://doi.org/10.5012/bkcs.2010.31.10.2830
  6. Dong, Y. M.; Yang, H. X.; He, K.; Wu, X.; Zhang, A. M. Appl. Catal., B: Environ. 2009, 85, 155. https://doi.org/10.1016/j.apcatb.2008.07.007
  7. Dong, Y. M.; Jiang, P. P.; Zhang, A. M. Chinese. J. Inorg. Chem. 2009, 25, 1595.
  8. Liu, Z. Q.; Ma, J.; Cui, Y. H.; Zhang, B. P. Appl. Catal., B: Environ. 2009, 92, 301. https://doi.org/10.1016/j.apcatb.2009.08.007
  9. Song, S.; Liu, Z. W.; He, Z. Q.; Zhang, A. L.; Chen, J. M.; Yang, Y. P.; Xu, X. H. Environ. Sci. Technol. 2010, 44, 3913. https://doi.org/10.1021/es100456n
  10. Li, M. H.; Pokhrel, S.; Jin, X.; Madler, L.; Damoiseaux, R.; Hoek, E. M. V. Environ. Sci. Technol. 2011, 45, 755. https://doi.org/10.1021/es102266g
  11. Jung, H.; Choi, H. Appl. Catal., B: Environ. 2006, 66, 288. https://doi.org/10.1016/j.apcatb.2006.03.009
  12. Huang, W. J.; Feng, G. C.; Wang, C. C. Colloids Surf., A: Physicochem. Eng. Aspects 2005, 260, 45. https://doi.org/10.1016/j.colsurfa.2005.01.031
  13. Zhai, X.; Chen, Z. L.; Zhao, S. Q.; Wang, H.; Yang, L. J. Environ. Sci. 2010, 22, 1527. https://doi.org/10.1016/S1001-0742(09)60284-9
  14. Zhao, B.; Wang, C. L.; Chen, Y. W.; Chen, H. L. Mater. Chem. Phys. 2010, 121, 1. https://doi.org/10.1016/j.matchemphys.2010.01.031
  15. Zhang, T.; Li, C. J.; Ma, J. Appl. Catal., B: Environ. 2008, 82, 131. https://doi.org/10.1016/j.apcatb.2008.01.008
  16. Qi, F.; Xu, B. B.; Chen, Z. L.; Ma, J.; Sun, D. Z.; Zhang, L. Q. Sep. Purif. Technol. 2009, 66, 405. https://doi.org/10.1016/j.seppur.2009.01.013
  17. Zhang, T.; Ma, J.; Lu, J. F.; Chen, Z. L.; Li, C. J.; Jiang, J. Water Sci. Technol.: Water Supply 2006, 6, 63. https://doi.org/10.2166/ws.2006.760
  18. Zhao, L.; Ma, J.; Sun, Z. Z.; Liu, H. L. J. Hazard. Mater. 2009, 167, 1119. https://doi.org/10.1016/j.jhazmat.2008.12.090
  19. Beltran, F. J.; Rivas, F. J.; Monter-de-Espinosa, R. Appl. Catal., B: Environ. 2002 39, 221. https://doi.org/10.1016/S0926-3373(02)00102-9
  20. Zhao, L.; Ma, J.; Sun, Z. Z. Appl. Catal., B: Environ. 2008, 79, 244. https://doi.org/10.1016/j.apcatb.2007.10.026
  21. Mu, Y.; Yu, H. Q.; Zheng, J. C.; Zhang, S. J.; Sheng, G. P. Chemosphere 2004, 54, 789. https://doi.org/10.1016/j.chemosphere.2003.10.023
  22. Zhao, L.; Ma, J.; Sun, Z. Z.; Liu, H. L. Appl. Catal., B: Environ. 2009, 89, 326. https://doi.org/10.1016/j.apcatb.2008.12.009
  23. Legube, B.; Karpel, V. L. N. Catal. Today 1999, 53, 61. https://doi.org/10.1016/S0920-5861(99)00103-0
  24. Kasprzyk-Hordern, B.; Zilek, M.; Nawrocki, J. Appl. Catal., B: Environ. 2003, 46, 639. https://doi.org/10.1016/S0926-3373(03)00326-6

Cited by

  1. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry vol.24, pp.4, 2017, https://doi.org/10.1007/s11356-016-8079-x
  2. Understanding of phenolic compound retention mechanisms on PES-UF membrane vol.41, pp.13036130, 2017, https://doi.org/10.3906/kim-1611-64