DOI QR코드

DOI QR Code

Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

  • Kim, Sung-Nam (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Seung-Bin (Department of Chemistry, Pohang University of Science and Technology) ;
  • Choi, Hyun-Chul (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2011.10.10
  • Accepted : 2011.11.19
  • Published : 2012.01.20

Abstract

In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) ${\rightarrow}$ 2268, 2164 (due to In-OH stretching mode) ${\rightarrow}$ 1546 (due to overtones of Sn-O-Sn modes) ${\rightarrow}$ 1412 (due to overtones of Sn-O-Sn modes) $cm^{-1}$.

Keywords

References

  1. Hamberg, I.; Granqvist, C. G. Sol. Energy Mater. 1986, 14, 241. https://doi.org/10.1016/0165-1633(86)90051-1
  2. Mwamburi, M.; Wakelgad, E.; Roos, A. Thin Solid Films 2000, 374, 1. https://doi.org/10.1016/S0040-6090(00)01045-2
  3. Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2007, 91, 1529. https://doi.org/10.1016/j.solmat.2007.04.031
  4. Jiao, Z.; Wu, M.; Gu, J.; Sun, X. Sens. Actuator. B 2003, 94, 216. https://doi.org/10.1016/S0925-4005(03)00343-5
  5. Sberveglieri, G.; Benussi, P.; Coccoli, G.; Groppelli, S.; Nelli, P. Thin Solid Films 1990, 186, 349. https://doi.org/10.1016/0040-6090(90)90150-C
  6. Xu, J.; Wang, X.; Shen, J. Sens. and Actuators B 2006, 115, 642. https://doi.org/10.1016/j.snb.2005.10.038
  7. Kim, H.; Gilmore, C. M.; Horwitz, J. S.; Pique, A.; Murata, H.; Kushto, G. P.; Schlaf, R.; Kafafi, Z. H.; Chrisey, D. B. Appl. Phys. Lett. 2000, 76, 259. https://doi.org/10.1063/1.125740
  8. Kim, H.; Pique, A.; Horwitz, J. S.; Mattoussi, H.; Murata, H.; Kafafi, Z. H.; Chrisey, D. B. Appl. Phys. Lett. 1999, 74, 3444. https://doi.org/10.1063/1.124122
  9. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4359. https://doi.org/10.1021/nl902623y
  10. Maruyama, T.; Fukui, K. Thin Solid Films 1991, 203, 297. https://doi.org/10.1016/0040-6090(91)90137-M
  11. Pearton, S. J.; Abernathy, C. R.; Overberg, M. E.; Thaler, G. T.; Norton, D. P.; Theodoropoulou, N.; Hebard, A. F.; Park, Y. D.; Ren, F.; Kim, J.; Boatner, L. A. J. Appl. Phys. 2003, 93, 1. https://doi.org/10.1063/1.1517164
  12. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
  13. Nadaud, N.; Lequeux, N.; Nanot, M.; Jov, J.; Roisnel, T. J. Solid State Chem. 1998, 135, 140. https://doi.org/10.1006/jssc.1997.7613
  14. Bates, J. L.; Griffin, C. W.; Marchant, D. D.; Garnier, J. E. Am. Cer. Soc. Bull. 1986, 65, 673.
  15. Alam, M. J.; Cameron, D. C. Thin Solid Films 2000, 377-378, 455. https://doi.org/10.1016/S0040-6090(00)01369-9
  16. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. https://doi.org/10.1126/science.1058120
  17. Al-Dahoudi, N.; Aegerter, M. A. Thin Solid Films 2006, 502, 193. https://doi.org/10.1016/j.tsf.2005.07.273
  18. Toki, M.; Aizawa, M. J. Sol-Gel Sci. Technol. 1997, 8, 717.
  19. Stoica, T. F.; Stoica, T. A.; Vanca, V.; Lakatos, E.; Zaharescu, M. Thin Solid Films 1999, 348, 273. https://doi.org/10.1016/S0040-6090(99)00136-4
  20. Sujatha Devi, P.; Chatterjee, M.; Ganguli, D. Mater. Lett. 2002, 55, 205. https://doi.org/10.1016/S0167-577X(01)00647-4
  21. Goebbert, C.; Nonninger, R.; Aegerter, M. A.; Schmidt, H. Thin Solid Films 1999, 351, 79. https://doi.org/10.1016/S0040-6090(99)00209-6
  22. Popovi, J.; Gr eta, B.; Tkalec, E.; Tonejc, A.; Bijeli, M.; Goebbert, C. Mater. Sci. Eng. B 2011, 176, 93. https://doi.org/10.1016/j.mseb.2010.09.008
  23. Kim, D.; Park, D. Surf. Coat. Technol. 2010, 205, 5201.
  24. Xu, B.; Feng, R.; Yang, B.; Deng, Y. Trans. Nonferrous. Met. Soc. China 2010, 20, 643. https://doi.org/10.1016/S1003-6326(09)60192-8
  25. Cho, H.; Yun, Y. Ceram. Int. 2011, 37, 615. https://doi.org/10.1016/j.ceramint.2010.09.033
  26. Li, S.; Qiao, X.; Chen, J.; Wang, H.; Jia, F.; Qiu, X. J. Cryst. Growth 2006, 289, 151. https://doi.org/10.1016/j.jcrysgro.2005.11.012
  27. Music, S.; Gotic, M.; Ivanda, M.; Popovic, S.; Turkovie, A.; Trojko, R.; Sekulic, A.; Furic, K. Mater. Sci. Eng. B 1997, 47, 33. https://doi.org/10.1016/S0921-5107(96)02041-7
  28. Nunes de Carvalho, C.; Botelho do Rego, A. M.; Amaral, A.; Brogueira, P.; Lavareda, G. Surf. Coat. Technol. 2000, 124, 70. https://doi.org/10.1016/S0257-8972(99)00619-2
  29. Jeon, M.; Kim, M. Mater. Lett. 2008, 62, 676. https://doi.org/10.1016/j.matlet.2007.06.038
  30. Nasser, H.; Redey, A.; Yuzhakova, T.; Kovacs, J. React. Kinet. Catal. Lett. 2008, 94, 165. https://doi.org/10.1007/s11144-008-5299-1
  31. Amalric-Popescu, D.; Bozon-Verduraz, F. Catal. Today 2001, 70, 139. https://doi.org/10.1016/S0920-5861(01)00414-X
  32. Wuu, D. S.; Lien, S. Y.; Mao, H. Y.; Wang, J. H.; Wu, B. R.; Yao, P. C.; Hsieh, I. C.; Peng, H. H.; Horng, R. H.; Chuang, Y. C. Thin Solid Films 2006, 501, 346. https://doi.org/10.1016/j.tsf.2005.07.147
  33. Ho, W. H.; Yen, S. K. Thin Solid Films 2006, 498, 80. https://doi.org/10.1016/j.tsf.2005.07.072
  34. Orel, B.; Lavrencic-Stankgar, U.; Crnjak-Orel, Z.; Bukovec, P.; Kosec, M. J. Non-Crystalline Solids 1994, 167, 272. https://doi.org/10.1016/0022-3093(94)90250-X
  35. Jung, Y. M.; Noda, I. Appl. Spectrosc. Rev. 2006, 41, 515. https://doi.org/10.1080/05704920600845868
  36. Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational Spectroscopy; John Wiley & Sons, Inc.: New York, U.S.A., 2004.
  37. Noda, I. Appl. Spectrosc. 1993, 47, 1329. https://doi.org/10.1366/0003702934067694

Cited by

  1. Fabrication of Highly Transparent and Conductive Indium–Tin Oxide Thin Films with a High Figure of Merit via Solution Processing vol.29, pp.45, 2013, https://doi.org/10.1021/la4033282
  2. Large-scale synthesis of ITO nanoparticles in an alcohol system assisted by acids vol.38, pp.8, 2014, https://doi.org/10.1039/C4NJ00061G
  3. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes vol.23, pp.22, 2015, https://doi.org/10.1364/OE.23.028775
  4. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes vol.1069, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2014.01.016
  5. Electrochemical deposition of Indium(III) hydroxide nanostructures for novel battery-like capacitive materials vol.45, pp.None, 2022, https://doi.org/10.1016/j.est.2021.103678