DOI QR코드

DOI QR Code

Spectroscopic and Electrochemical Detection of Thrombin/5'-SH or 3'-SH Aptamer Immobilized on (porous) Gold Substrates

  • Park, Buem-Jin (Department of Chemical Engineering, Kwangwoon University) ;
  • Sa, Young-Seung (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Young-Hun (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2011.08.01
  • Accepted : 2011.11.06
  • Published : 2012.01.20

Abstract

Thrombin is a serine protease that catalyzes the conversion of soluble fibrinogen to insoluble fibrin, and thus induces physiological and pathological blood coagulation. Therefore, it is important to detect thrombin in blood serum for purposes of diagnosis. To achieve this goal, it has been suggested that a 15-mer aptamer strongly binds with thrombin to form a G-quartet structure of the aptamer. Generally, 5'-end thiol-functionalized aptamer has been used as an anti-thrombin binder. Herein, we evaluate the possibility of utilizing a 3'-SH aptasensor for thrombin detection using SPR spectroscopy, and compare the enhancement of the electrochemical signal of the thrombin-aptamer bound on a porous gold substrate. Although the two aptamers have similar configurations, in SPR analysis, the 3'-SH aptamer was a effective aptasensor as well as 5'-SH aptamer. Results from electrochemical analysis showed that the porous gold substrate acted as a good substrate for an aptasensor and demonstrated 5-fold enhancement of current change, as compared to gold thin film.

Keywords

References

  1. Holland, C. A.; Henry, A. T.; Whinna, H. C.; Church, F. C. FEBS Lett. 2000, 484, 87. https://doi.org/10.1016/S0014-5793(00)02131-1
  2. Francois, L.; David, F. W. Physiol. Rev. 1954, 34, 722. https://doi.org/10.1152/physrev.1954.34.4.722
  3. Nishino, A.; Suzuki, M.; Ohtani, H.; Motohashi, O.; Umezawa, K.; Nagura, H.; Yoshimoto, T. J. Neurotrauma 1993, 10, 167. https://doi.org/10.1089/neu.1993.10.167
  4. Arai, T.; Miklossy, J.; Klegeris, A.; Guo, J. P.; McGeer, P. L. J. Neuropathol. Exp. Neurol. 2006, 65, 19. https://doi.org/10.1097/01.jnen.0000196133.74087.cb
  5. Wang, Y.; Liu, B. Langmuir 2009, 25, 12787. https://doi.org/10.1021/la901703p
  6. Zheng, J.; Chen, G.-F.; He, P.-G.; Fang, Y.-Z. Talanta 2010, 80, 1868. https://doi.org/10.1016/j.talanta.2009.10.036
  7. Wang, Y.; He, X.; Wang, K.; Ni, X.; Su, J.; Chen, Z. Biosens. Bioelectron. 2011, 26, 3536. https://doi.org/10.1016/j.bios.2011.01.041
  8. Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Nature 1992, 355, 564. https://doi.org/10.1038/355564a0
  9. Smirnov, I.; Shafer, R. H. Biochemistry 2000, 39, 1462. https://doi.org/10.1021/bi9919044
  10. Paborsky, L. R.; McCurdy, S. N.; Griffin, L. C.; Toole, J. J.; Leung, L. L. J. Biol. Chem. 1993, 268, 20808.
  11. Tasset, D. M.; Kubik, M. F.; Steiner, W. J. Mol. Biol. 1997, 272, 688. https://doi.org/10.1006/jmbi.1997.1275
  12. Huang, D.-W.; Niu, C.-G.; Qin, P.-Z.; Ruan, M.; Zeng, G.-M. Talanta 2010, 83, 185. https://doi.org/10.1016/j.talanta.2010.09.004
  13. So, H.-M.; Won, K.; Kim, Y. H.; Kim, B.-K.; Ryu, B. H.; Na, P. S.; Kim, H.; Lee, J.-O. J. Am. Chem. Soc. 2005, 127, 11906. https://doi.org/10.1021/ja053094r
  14. Cai, H.; Lee, T. M.-H.; Hsing, I.-M. Sens. Actuator B 2006, 114, 433. https://doi.org/10.1016/j.snb.2005.06.017
  15. Zheng, Y.; Wang, Y.; Yang, X. Sens. Actuator B 2011, 156, 95. https://doi.org/10.1016/j.snb.2011.03.077
  16. Jeong, S. H.; Kim, C. S.; Yang, J. BioChip J. 2010, 4, 141. https://doi.org/10.1007/s13206-010-4209-6
  17. Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y. H. Anal. Bioanal. Chem. 2008, 390, 1023. https://doi.org/10.1007/s00216-007-1643-y
  18. Kim, Y. H.; Kim, J. P.; Han, S. J.; Sim, S. J. Sens. Actuator B 2009, 139, 471. https://doi.org/10.1016/j.snb.2009.03.013
  19. Kim, H.; Kim, Y.; Joo, J. B.; Ko, J. W.; Yi, J. Micropor. Mesopor. Mat. 2009, 122, 283. https://doi.org/10.1016/j.micromeso.2009.03.012
  20. Lee, Y.-J.; Park, D.-J.; Park, J.-Y.; Kim, Y. Sensors 2009, 8, 6154. https://doi.org/10.3390/s8106154
  21. Howard, N.; Abell, C.; Blakemore, W.; Chessari, G.; Howard, S.; Murray, C. W.; Seavers, L. C.; van Montfort, R. L. J. Med. Chem. 2006, 49, 1346. https://doi.org/10.1021/jm050850v
  22. Hiankik, T.; Wang, J. Electroanalysis 2009, 21, 1223. https://doi.org/10.1002/elan.200904566
  23. Baldrich, E.; Restrepo, A.; O'Sullivan, C. K. Anal. Chem. 2004, 76, 7053. https://doi.org/10.1021/ac049258o
  24. Hamaguchi, N.; Ellington, A.; Stanton, M. Analy. Biochem. 2001, 294, 126. https://doi.org/10.1006/abio.2001.5169
  25. Smirnov, I.; Shafer, R. H. Biochem. 2000, 39, 1462. https://doi.org/10.1021/bi9919044

Cited by

  1. Effect of a roughness factor on electrochemical reduction of 4-nitrophenol using porous gold vol.34, pp.9, 2017, https://doi.org/10.1007/s11814-017-0137-7
  2. Waveguide-Mode Sensors as Aptasensors vol.12, pp.2, 2012, https://doi.org/10.3390/s120202136
  3. Aptamer-based fiber sensor for thrombin detection vol.21, pp.8, 2016, https://doi.org/10.1117/1.JBO.21.8.087005