DOI QR코드

DOI QR Code

Detection of Sequence-Specific Gene by Multi-Channel Electrochemical DNA Chips

  • Zhang, Xuzhi (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Ji, Xinming (The State Key Laboratory of ASIC & System, Department of Microelectronics, Fudan University) ;
  • Cui, Zhengguo (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Yang, Bing (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Huang, Jie (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
  • Received : 2011.09.01
  • Accepted : 2011.11.01
  • Published : 2012.01.20

Abstract

Five-channel electrochemical chips were fabricated based on the Micro-electromechanical System (MEMS) technology and were used as platforms to develop DNA arrays. Different kinds of thiolated DNA strands, whose sequences were related to white spot syndrome virus (WSSV) gene, were separately immobilized onto different working electrodes to fabricate a combinatorial biosensor system. As a result, different kinds of target DNA could be analyzed on one chip via a simultaneous recognition process using potassium ferricyanide as an indicator. To perform quantitative target DNA detection, a limit of 70 nM (S/N=3) was found in the presence of 600 nM coexisting noncomplementary ssDNA. The real samples of loop-mediated isothermal amplification (LAMP) products were detected by the proposed method with satisfactory result, suggesting that the multichannel chips had the potential for a high effective microdevice to recognize specific gene sequence for pointof-care applications.

Keywords

References

  1. Levinea, P. M.; Gonga, P.; Levicky, R.; Shepard, K. L. Biosens. Bioelectron. 2009, 24, 1995. https://doi.org/10.1016/j.bios.2008.10.012
  2. Moeller, R.; Fritzsche, W. IEE Proc-Nanobiotechnol. 2005, 152, 47. https://doi.org/10.1049/ip-nbt:20045020
  3. Dill, K.; McShea, A. Drug Discov. Today Tech. 2005, 2, 261. https://doi.org/10.1016/j.ddtec.2005.08.011
  4. Choi, Y.-S.; Park, D.-H. J. Korean Phys. Soc. 2004, 6, 1556.
  5. Odenthal, K. J.; Gooding, J. J. Analyst 2007, 132, 603. https://doi.org/10.1039/b701816a
  6. Wang, J. Biosens. Bioelectron. 2006, 21, 1887. https://doi.org/10.1016/j.bios.2005.10.027
  7. Zhu, N.; Gu, Y.; Chang, Z.; He, P.; Fang, Y. Electroanalysis 2006, 18, 2107. https://doi.org/10.1002/elan.200603589
  8. Wang, J.; Kawde, A.-N.; Musameh, M. Analyst 2003, 128, 912. https://doi.org/10.1039/b303282e
  9. Ariksoysal, D. O.; Karadeniz, H.; Erdem, A.; Sengonul, A.; Sayiner, A. A.; Ozsoz, M. Anal. Chem. 2005, 77, 4908. https://doi.org/10.1021/ac050022+
  10. Jiao, K.; Yang, T.; Yang, J.; Feng, Y. Sci. China Ser. B 2007, 50, 538. https://doi.org/10.1007/s11426-007-0034-8
  11. Yeung, S. S. W.; Lee, T. M. H.; Hsing, I.-M. Anal. Chem. 2008, 80, 363. https://doi.org/10.1021/ac071198+
  12. Wang, J. Nucleic Acids Res. 2000, 28, 3011. https://doi.org/10.1093/nar/28.16.3011
  13. Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; SantaAna, M.; Danley, D.; West, T.; Lanfranchi, G. Sensors 2009, 9, 3122. https://doi.org/10.3390/s90403122
  14. Zhang, X.; Jiao, K.; Liu, S.; Hu, Y. Anal. Chem. 2009, 81, 6006. https://doi.org/10.1021/ac802026j
  15. Service, R. Science 1998, 282, 396. https://doi.org/10.1126/science.282.5388.396
  16. Goto, K.; Horiuchi, H.; Shinohara, H.; Motegi, K.; Hashimoto, K.; Hongo, S.; Gemma, N.; Hayashimoto, N.; Itoh, T.; Takakura, A. J. Microbiol. Meth. 2007, 69, 93.
  17. Liang, Y.; Huang, J.; Song, X.; Zhang, P.; Xu, H. Dis. Aquat. Org. 2005, 66, 81. https://doi.org/10.3354/dao066081
  18. Yan, D.; Dong, S.; Huang, J.; Yu, X.; Feng, M.; Liu, X. Dis. Aquat. Org. 2004, 59, 69. https://doi.org/10.3354/dao059069
  19. Gooding, J. J. Electroanalysis 2002, 14, 1149. https://doi.org/10.1002/1521-4109(200209)14:17<1149::AID-ELAN1149>3.0.CO;2-8
  20. Zhang, J.; Song, S.; Zhang, L.; Wang, L.; Wu, H.; Pan, D.; Fan, C. J. Am. Chem. Soc. 2006, 128, 8575. https://doi.org/10.1021/ja061521a
  21. Pandey, C. M.; Singh, R.; Sumana, G.; Pandey, M. K.; Malhotra, B. D. Sens. Actuators B 2011, 151, 333. https://doi.org/10.1016/j.snb.2010.07.046
  22. Steel, A. B.; Herne, T. M.; Tarlov, M. J. Anal. Chem. 1998, 70, 4670. https://doi.org/10.1021/ac980037q
  23. Zhang, S.; Zhong, H.; Ding, C. Anal. Chem. 2008, 80, 7206. https://doi.org/10.1021/ac800847r
  24. Levicky, R.; Herne, T. M.; Tarlov, M. J.; Satija, S. K. J. Am. Chem. Soc. 1998, 120, 9787. https://doi.org/10.1021/ja981897r
  25. Zhang, Q.; Shi, C.; Huang, J.; Jia, K.; Chen, X.; Liu, H. J. Virol. Meth. 2009, 158, 18. https://doi.org/10.1016/j.jviromet.2009.01.008
  26. Sun, W.; Qin, P.; Gao, H.; Li, G.; Jiao, K. Biosen. Bioelectron. 2010, 25, 1264. https://doi.org/10.1016/j.bios.2009.10.011
  27. Harrison, D. E.; Taube, H. J. Am. Chem. Soc. 1967, 89, 5706. https://doi.org/10.1021/ja00998a038
  28. http://www.piercenet.com/Products/Browse.cfm?fldID= 02051012&WT.mc_id=go_TCEP_TCEP_pf&gclid=CKjj0oLRx qICFQ0dewodfhS9HA.
  29. Kim, J. H.; Hong, J.-A.; Yoon, M.; Yoon, M. Y.; Jeong, H.-S.; Hwang, H. J. J. Biotechnol. 2002, 96, 213. https://doi.org/10.1016/S0168-1656(02)00051-2
  30. Li, A.; Yang, F.; Ma, Y.; Yang, X. Biosens. Bioelectron. 2007, 22, 1716. https://doi.org/10.1016/j.bios.2006.07.033
  31. Cai, H.; Xu, Y.; He, P.; Fang, Y. Electroanalysis 2003, 15, 1864. https://doi.org/10.1002/elan.200302755
  32. Kerman, K.; Morita, Y.; Takamura, Y.; Ozsoz, M.; Tamiya, E. Electroanalysis 2004, 16, 1667. https://doi.org/10.1002/elan.200303025
  33. Hashimoto, K.; Ito, K.; Ishlmori, Y. Anal. Chem. 1994, 66, 3830. https://doi.org/10.1021/ac00093a045

Cited by

  1. Diagnostics Using Multiplexed Electrochemical Readout Devices vol.26, pp.6, 2014, https://doi.org/10.1002/elan.201400015
  2. An Elegant Analysis of White Spot Syndrome Virus Using a Graphene Oxide/Methylene Blue based Electrochemical Immunosensor Platform vol.7, pp.1, 2017, https://doi.org/10.1038/srep46169