DOI QR코드

DOI QR Code

Electrochemical Properties of Li1.1V0.75W0.075Mo0.075O2/Graphite Composite Anodes for Lithium-ion Batteries

  • Kim, Hyung-Sun (Energy Storage Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Sang-Ok (Energy Storage Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University) ;
  • Jung, Ji-Kwon (Department of Chemical Engineering, Chungbook National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbook National University) ;
  • Lee, Joong-Kee (Energy Storage Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2011.08.26
  • Accepted : 2011.10.31
  • Published : 2012.01.20

Abstract

Novel type $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ powders were prepared by a solid-state reaction of $Li_2CO_3$, $V_2O_3$, $WO_2$ and $MoO_2$ precursors in a nitrogen atmosphere containing 10 mol % hydrogen gas, and assessed as anode materials in lithium-ion batteries. The specific charge and discharge capacities of the $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ anodes were higher than those of the bare $Li_{1.1}V_{0.9}O_2$ anode. The cyclic efficiency of these anodes was approximately 73.3% at the first cycle, regardless of the presence of W and Mo doping. The composite anode, which was composed of $Li_{1.1}V_{0.75}W_{0.075}Mo_{0.075}O_2$ (20 wt %) and natural graphite (80 wt %), demonstrated reasonable specific capacity, high cyclic efficiency, and good cycling performance, even at high rates without capacity fading.

Keywords

References

  1. Huang, W.; Gao, S.; Ding, X.; Jiang, L.; Wei, M. J. Alloys and Compounds 2010, 495, 185. https://doi.org/10.1016/j.jallcom.2010.01.116
  2. Reddy, M.; Pecquenard, B.; Vinatier, P.; Levasseur, A. J. Power Sources 2007, 163, 1040. https://doi.org/10.1016/j.jpowsour.2006.09.078
  3. Morishita, T.; Nomura, K.; Inamasu, T.; Inagaki, M. Solid State Ionics 2005, 176, 2235. https://doi.org/10.1016/j.ssi.2005.06.013
  4. Choi, N.; Kim, J.; Yin, R.; Kim, S. Materials Chemistry and Physics 2009, 116, 603. https://doi.org/10.1016/j.matchemphys.2009.05.013
  5. Kim, H.; Cho, B. Bulletin of the Korean Chemical Society 2010, 31, 1267. https://doi.org/10.5012/bkcs.2010.31.5.1267
  6. Lee, S.; Kim, H.; Seong, T. J. Alloys and Compounds 2011, 509, 3136. https://doi.org/10.1016/j.jallcom.2010.12.025
  7. Song, J.; Park, H.; Kim, K.; Jo, Y.; Kim, J.; Jeong, Y.; Kim, Y. J. Power Sources 2010, 195, 6157. https://doi.org/10.1016/j.jpowsour.2009.12.103
  8. Goodenough, J.; Dutta, G.; Manthiram, A. Physical. Review B 1991, 43, 10170. https://doi.org/10.1103/PhysRevB.43.10170
  9. Yin, R.; Kim, Y.; Choi, W.; Kim, S.; Kim, H. Advances in Quantum Chemistry 2008, 54, 23. https://doi.org/10.1016/S0065-3276(07)00003-2
  10. Scrosati, B. Electrochimica Acta 1981, 26, 1559. https://doi.org/10.1016/0013-4686(81)85129-8
  11. Schalkwijk, W.; Scrosati, B., Advances in Lithium-Ion Batteries; Kluwer Academic/Plenum Publishers: New York, 2002; Ch. 3.

Cited by

  1. Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1199
  2. @C composites as promising anode materials for lithium-ion batteries vol.19, pp.13, 2017, https://doi.org/10.1039/C6CP08827A
  3. Li1.1V0.9O2/C Microspheres with Isomeric Core-Shell structure and their Improved Lithium Storage Performance for Lithium-Ion Batteries pp.21960216, 2018, https://doi.org/10.1002/celc.201801068