DOI QR코드

DOI QR Code

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin (Metalloenzyme Research Group and School of Biosciences, Chung-Ang University) ;
  • Han, Jae-Hong (Metalloenzyme Research Group and School of Biosciences, Chung-Ang University)
  • Received : 2011.10.06
  • Accepted : 2011.10.26
  • Published : 2012.01.20

Abstract

The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.

Keywords

References

  1. Kim, M.; Han, J. Polyhedron 2007, 26, 2949. https://doi.org/10.1016/j.poly.2007.01.052
  2. Lee, S. C.; Holm, R. H. Chem. Rev. 2004, 104, 1135. https://doi.org/10.1021/cr0206216
  3. Han, J.; Beck, K.; Ockwig, N.; Coucouvanis, D. J. Am. Chem. Soc. 1999, 121, 10448. https://doi.org/10.1021/ja991880o
  4. Zhou, J.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 11353. https://doi.org/10.1021/ja00150a039
  5. Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L. J. Am. Chem. Soc. 2009, 131, 6942. https://doi.org/10.1021/ja902570u
  6. Lee, C. M.; Chen, C. H.; Liao, F. X.; Hu, C. H.; Lee, G. H. J. Am. Chem. Soc. 2010, 132, 9256. https://doi.org/10.1021/ja102430d
  7. Grawert, T.; Rohdich, F.; Span, I.; Bacher, A.; Eisenreich, W.; Eppinger, J.; Groll, M. Angew. Chem. 2009, 48, 5756. https://doi.org/10.1002/anie.200900548
  8. Frey, P. A.; Hegeman, A. D.; Ruzicka, F. J. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 63. https://doi.org/10.1080/10409230701829169
  9. Schnell, R.; Sandalova, T.; Hellman, U.; Lindqvist, Y.; Schneider, G. J. Biol. Chem. 2005, 280, 27319. https://doi.org/10.1074/jbc.M502560200
  10. Saeva, F. D.; Morgan, B. P. J. Am. Chem. Soc. 1984, 106, 4121. https://doi.org/10.1021/ja00327a010
  11. Shin, B. K.; Kim, M.; Han, J. Polyhedron. 2010, 29, 2560. https://doi.org/10.1016/j.poly.2010.05.029
  12. Kim, M.; Chi, Y. S.; Han, J. Bull. Korean Chem. Soc. 2010, 31, 23. https://doi.org/10.5012/bkcs.2010.31.01.023
  13. Shin, B. K.; Kim, Y.; Kim, M.; Han, J. Polyhedron. 2007, 26, 4557. https://doi.org/10.1016/j.poly.2007.06.011
  14. Kim, M.; Kim, Y. U.; Han, J. Polyhedron. 2007, 26, 4003. https://doi.org/10.1016/j.poly.2007.04.041
  15. Wong, G. B.; Bobrik, M. A.; Holm, R. H. Inorg. Chem. 1978, 17, 578. https://doi.org/10.1021/ic50181a012
  16. Remuzon, P.; Bouzard, D.; Cesare, P. D.; Essiz, M.; Jacquet, J. P.; Nicolau, A. Tetrahedron. 1995, 51, 9657. https://doi.org/10.1016/0040-4020(95)00613-D
  17. Sheldrick, G. M. Acta Crystallogr. A. 2008, 64, 112. https://doi.org/10.1107/S0108767307043930
  18. Han, J.; Coucouvanis, D. Inorg. Chem. 2002, 41, 2738. https://doi.org/10.1021/ic010913+
  19. Johnson, R. W.; Holm, R. H. J. Am. Chem. Soc. 1978, 100, 5338. https://doi.org/10.1021/ja00485a014
  20. Averill, B. A.; Herskovitz, T.; Holm, R. H. J. Am. Chem. Soc. 1973, 95, 3523. https://doi.org/10.1021/ja00792a013
  21. Bobrik, M. A.; Hodgson, K. O.; Holm, R. H. Inorg. Chem. 1977, 16, 1851. https://doi.org/10.1021/ic50174a005
  22. Dey, A.; Jenney, F. E., Jr.; Adams, M. W. W.; Babini, E.; Takahashi, Y.; Fukuyama, K.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Science 2007, 318, 1464. https://doi.org/10.1126/science.1147753
  23. Frankel, R. B.; Herskovitz, T.; Averill, B. A.; Holm, R. H.; Krusic, P. J.; Phillips, W. D. Biochem. Biophys. Res. Comm. 1974, 58, 974. https://doi.org/10.1016/S0006-291X(74)80239-1
  24. Kanatzidis, M. G.; Hagen, W. R. Dunham, W. R.; Lester, R. K.; Coucouvanis, D. J. Am. Chem. Soc. 1985, 107, 953. https://doi.org/10.1021/ja00290a034
  25. DePamphilis, B. V.; Averill, B. A.; Herskovitz, T.; Que, L., Jr.; Holm, R. H. J. Am. Chem. Soc. 1974, 96, 4159. https://doi.org/10.1021/ja00820a017
  26. Kern, A.; Näther, C.; Tuczek, F. Inorg. Chem. 2004, 43, 5020.
  27. Xiao, Y.; Koutmos, M.; Case, D. A.; Coucouvanis, D.; Wang, H.; Cramer, S. P. Dalton Trans. 2006, 2192.
  28. Czernuszewicz, R. S.; Macor, K. A.; Johnson, M. K.; Gewirth, A.; Spiro, T. G. J. Am. Chem. Soc. 1987, 109, 7178. https://doi.org/10.1021/ja00257a045
  29. Cambray, J.; Lane, R. W.; Wedd, A. G.; Johnson, R. W.; Holm, R. H. Inorg. Chem. 1977, 16, 2565.
  30. Daley, C. J. A.; Holm, R. H. Inorg. Chem. 2001, 40, 2785. https://doi.org/10.1021/ic010039k
  31. Walsby, C. J.; Ortillo, D.; Yang, J.; Nnyepi, M. R.; Broderick, W. E.; Hoffman, B. M.; Broderick, J. B. Inorg. Chem. 2005, 44, 727. https://doi.org/10.1021/ic0484811

Cited by

  1. Isolation and Characterization of Single and Sulfide-Bridged Double [4Fe-4S] Cubane Clusters with 4-Pyridinethiolato Ligands vol.2013, pp.30, 2013, https://doi.org/10.1002/ejic.201300802
  2. clusters (X, Y = Cl, Br, I)—alternative preparations, structural analogies and spectroscopic properties in solution and solid state vol.45, pp.1, 2016, https://doi.org/10.1039/C5DT02769A
  3. Progress in Synthesizing Analogues of Nitrogenase Metalloclusters for Catalytic Reduction of Nitrogen to Ammonia vol.9, pp.11, 2012, https://doi.org/10.3390/catal9110939
  4. Spin Crossover vs. High‐Spin Iron(II) Complexes in N4S2 Coordination Sphere Containing Picolyl‐Thioether Ligands and NCE (E=S, Se and BH3) Co‐Ligands vol.2021, pp.28, 2012, https://doi.org/10.1002/ejic.202100355