DOI QR코드

DOI QR Code

Metalloporphyrin-Catalyzed Chemoselective Oxidation of Sulfides with Polyvinylpyrrolidone-Supported Hydrogen Peroxide: Simple Catalytic System for Selective Oxidation of Sulfides to Sulfoxides

  • Zakavi, Saeed (Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)) ;
  • Abasi, Azam (School of Chemistry, Damghan University) ;
  • Pourali, Ali Reza (School of Chemistry, Damghan University) ;
  • Talebzadeh, Sadegh (Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS))
  • Received : 2011.08.02
  • Accepted : 2011.10.26
  • Published : 2012.01.20

Abstract

Room temperature oxidation of organic sulfides with polyvinylpyrrolidone-supported hydrogen peroxide (PVP-$H_2O_2$) in the presence of Mn(III) complexes of meso-tetraphenylporphyrin, Mn(TPP)X (X = OCN, SCN, OAc, Cl) and imidazole (ImH) leads to the highly chemoselective (ca. 90%) oxidation of sulfides to the corresponding sulfoxide. The efficiency of reaction has been shown to be influenced by different reaction parameters such as the nature of counterion (X) and solvent as well as the molar ratio of reactants. Using Mn(TPP)OCN and ImH in 1:15 molar ratio and acetone as the solvent leads to the efficient oxidation of different sulfides.

Keywords

References

  1. Backvall, J. E. Selective Oxidation of Amines and Sulfides chapter in Modern Oxidation Methods, Backvall, J. E., Ed.; Wiley-VCH WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004.
  2. Fernandez, I.; Khiar N. Chem. Rev. 2003, 103, 3651. https://doi.org/10.1021/cr990372u
  3. Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2002, 124, 4198. https://doi.org/10.1021/ja0178721
  4. Flynn, G. A.; Ash, R. J. Biochem. Biophys. Res. Commun. 1983, 114, 1. https://doi.org/10.1016/0006-291X(83)91585-1
  5. Dai, Y.; Qi, Y.; Zhao, D.; Zhang, H. Fuel Process. Technol. 2008, 89, 927. https://doi.org/10.1016/j.fuproc.2008.03.009
  6. Jones, C. W. Applications of Hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, U.K., 1999.
  7. Reddy, T. I.; Varma, R. S. Chem. Commun. 1997, 471.
  8. Iranpoor, N.; Mohajer, D.; Rezaeifard, A. Tetrahedron. Lett. 2004, 45, 3811. https://doi.org/10.1016/j.tetlet.2004.03.082
  9. Ghaemi, A.; Rayati, S.; Zakavi, S.; Safari, N. Appl. Catal. A 2009, 353, 154. https://doi.org/10.1016/j.apcata.2008.10.043
  10. Zhou, X.-T.; Ji, H.-B.; Cheng, Z.; Xu, J.-C.; Pei, L.-X.; Wang, L. F. Bioorg. Med. Chem. Lett. 2007, 17, 4650. https://doi.org/10.1016/j.bmcl.2007.05.073
  11. Huang, J.-Y.; Li, S.-J.; Wang, Y.-G. Tetrahedron. Lett. 2006, 47, 5637. https://doi.org/10.1016/j.tetlet.2006.06.039
  12. Pourali, A. R.; Ghanei, M. Chin. J. Chem. 2006, 24, 1077. https://doi.org/10.1002/cjoc.200690201
  13. Pourali, A. R.; Ghanei, M. Bull. Korean Chem. Soc. 2006, 27, 1674. https://doi.org/10.5012/bkcs.2006.27.10.1674
  14. Zakavi, S.; Abasi, A.; Pourali, A. R.; Rayati, S. Bull. Korean Chem. Soc. 2008, 29, 866. https://doi.org/10.5012/bkcs.2008.29.4.866
  15. Mohajer, D.; Karimipour, G.; Bagherzadeh, M. New J. Chem. 2004, 28, 740. https://doi.org/10.1039/b310909g
  16. Mohajer, D.; Tayebee, R.; Goudarziafshar, H. J. Chem. Res. S 1999, 168.
  17. Nam, W. Acc. Chem. Res. 2007, 40, 522. https://doi.org/10.1021/ar700027f
  18. Rayati, S.; Zakavi, S.; Noroozi, V. J. Sulfur. Chem. 2010, 31, 89. https://doi.org/10.1080/17415990903569551
  19. Nam, W.; Lim, M. H.; Lee, H. J.; Kim, C. J. Am. Chem. Soc. 2000, 122, 6641. https://doi.org/10.1021/ja000289k
  20. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. D. Vogel's Textbook of Quantitative Chemical Analysis, 5th ed.; John Wiley & Sons: New York, 1989.
  21. Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443. https://doi.org/10.1016/0022-1902(70)80535-8
  22. Adler, A. D. J. Org. Chem. 1967, 32, 476.
  23. Mohajer, D.; Abbasi, M. Eur. J. Inorg. Chem. 2008, 3218.
  24. Ogoshi, H.; Watanabe, E.; Yoshida, Z.; Kincaid, J.; Nakamoto, K. J. Am. Chem. Soc. 1973, 95, 2845. https://doi.org/10.1021/ja00790a017
  25. Mohajer, D.; Sadeghian, L. J. Mol. Catal. A: Chem. 2007, 272, 191. https://doi.org/10.1016/j.molcata.2007.03.033
  26. Mansuy, D.; Battioni, P. in The Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: San Diego, U.S., 2000.
  27. Nam, W.; Lim, M. H.; Oh, S.-Y. Inorg. Chem. 2000, 39, 5572. https://doi.org/10.1021/ic000502d
  28. Nam, W.; Jin, S. W.; Lim, M. H.; Ryu, J. Y.; Kim, C. Inorg. Chem. 2002, 41, 3647. https://doi.org/10.1021/ic011145p
  29. Andini, S.; Castronuovo, G.; Elia, V.; Pignone, A.; Velleca, F. J. Solution Chem. 1996, 25, 825. https://doi.org/10.1007/BF00972575
  30. Ali, M. H.; Bohnert, G. J. Synthesis 1998, 1238.
  31. Zhang, R.; Horner, J. H. Newcomb, M. J. Am. Chem. Soc. 2005, 127, 6573. https://doi.org/10.1021/ja045042s

Cited by

  1. Biomimetic Sulfide Oxidation by the Means of Immobilized Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphin under Mild Experimental Conditions vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/651274
  2. /Polyvinylpyrrolidone vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1741
  3. Substrate-dependent order of catalytic activity for a series of Fe(III) and Mn(III) porphyrins in the oxidation of organic sulfides and olefins with periodate vol.12, pp.5, 2015, https://doi.org/10.1007/s13738-014-0549-9
  4. Highly selective and efficient oxidation of sulfide to sulfoxide catalyzed by platinum porphyrins vol.19, pp.12, 2015, https://doi.org/10.1142/S1088424615501126
  5. Direct Iodination of Aromatic Compounds by Using Polymer-Supported Dichloroiodate as an Efficient Reagent under Mild Conditions vol.38, pp.1, 2015, https://doi.org/10.1007/s40009-014-0292-x
  6. Nanosized cationic and anionic manganese porphyrins as mesoporous catalysts for the oxidation of olefins: Nano versus bulk aggregates vol.32, pp.3, 2017, https://doi.org/10.1002/aoc.4175
  7. Simple low cost porphyrinic photosensitizers for large scale chemoselective oxidation of sulfides to sulfoxides under green conditions: targeted protonation of porphyrins vol.8, pp.3, 2018, https://doi.org/10.1039/C7CY02308A
  8. -substituted one vol.42, pp.3, 2018, https://doi.org/10.1039/C7NJ04233G
  9. substituents: Indirect evidence on the nature of active oxidant species pp.02682605, 2018, https://doi.org/10.1002/aoc.4678
  10. Ultrasound promoted green oxidation of alkenes with hydrogen peroxide in the presence of iron porphyrins supported on multi-walled carbon nanotubes vol.19, pp.4, 2012, https://doi.org/10.1142/s1088424615500030
  11. Catalytic activity and electrochemical properties of Cu(II)-Schiff base complex encapsulated in the nanocavities of zeolite-Y for oxidation of olefins and sulfides vol.70, pp.15, 2017, https://doi.org/10.1080/00958972.2017.1369052
  12. The first solid state porphyrin-weak acid molecular complex: A novel metal free, nanosized and porous photocatalyst for large scale aerobic oxidations in water vol.364, pp.None, 2012, https://doi.org/10.1016/j.jcat.2018.06.011
  13. Catalytic activity of Mn(III) porphyrins supported onto graphene oxide nano-sheets for green oxidation of sulfides vol.72, pp.9, 2012, https://doi.org/10.1080/00958972.2019.1610562
  14. Catalytic activity of Mn(III) porphyrins supported onto graphene oxide nano-sheets for green oxidation of sulfides vol.72, pp.9, 2012, https://doi.org/10.1080/00958972.2019.1610562
  15. Photocatalytic asymmetric epoxidation of trans-stilbene with manganese-porphyrin/graphene-oxide nanocomposite and molecular oxygen: axial ligand effect vol.10, pp.10, 2012, https://doi.org/10.1039/d0cy00441c
  16. Highly efficient Co(II) porphyrin catalysts for the extractive oxidative desulfurization of dibenzothiophene in fuel oils under mild conditions vol.25, pp.1, 2021, https://doi.org/10.1142/s1088424620500443
  17. Surface decorated magnetic nanoparticles with Mn-porphyrin as an effective catalyst for oxidation of sulfides vol.26, pp.1, 2012, https://doi.org/10.1142/s1088424621500802