DOI QR코드

DOI QR Code

Physical Habitat Modeling in Dalcheon Stream Using Fuzzy Logic

퍼지논리를 이용한 달천의 물리서식처 모의

  • Jung, Sang-Hwa (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Jang, Ji-Yeon (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (Department of Civil & Environmental Engineering, Yonsei University)
  • 정상화 (한국건설기술연구원) ;
  • 장지연 (연세대학교 대학원 토목환경공학과) ;
  • 최성욱 (연세대학교 공과대학 토목환경공학과)
  • Received : 2011.12.14
  • Accepted : 2012.01.12
  • Published : 2012.02.29

Abstract

This study presents a physical habitat modeling of adult Zacco platypus in a reach of the Dalcheon Stream located downstream of the Goesaan Dam. CASiMiR model is used to estimate habitat suitability index based on the fuzzy logic. Results are compared with those from River2D model, which uses habitat preference curve for habitat suitability index. Hydraulic data simulated by River2D are used as input data for CASiMiR model after verification against field measurements. The result shows that the habitat suitability of the adult Zacco platypus is maximum around the riffle area located upstream of the bend. CASiMiR and River2D estimate the maximum weighted usable areas at the discharge rates of 7.23 $m^3/s$ and 9.0 $m^3/s$, respectively. Overall comparison of the two models employed in this study indicates that CASiMiR model overestimates the weighted usable area by 0.3~25.3% compared with River2D model in condition of drought flow (Q355), low flow (Q275), normal flow (Q185), and average-wet flow (Q95).

본 연구에서는 괴산댐 하류 달천에서 성어기 피라미에 대한 물리 서식처 모의를 수행하였다. 이를 위하여 퍼지논리에 의한 서식처 적합도 지수를 산정하는 CASiMiR 모형을 이용하였다. 또한 모의결과를 서식처 선호도 곡선을 이용하여 서식처 적합도 지수를 산정할 수 있는 수리모형인 River2D 모형의 결과와 비교, 분석하였다. CASiMiR 모형의 수위 자료는River2D 모형을 통한 수위계산결과를 활용하였으며 현장측정자료와 비교한 결과 잘 반영하는 것을 확인하였다. 대상구간의 만곡부 상류 직선구간에 있는 여울에서 성어기 피라미의 서식처가 가장 적합한 것으로 나타났다. CASiMiR 모형의 경우$7.23m^3/s$의유량조건에서가중가용면적이최대값을보였고, River2D 모형은$9m^3/s$의 유량에서 최대 가중가용면적을 예측하였다. 또한 갈수량(Q355), 저수량(Q275), 평수량(Q185), 풍수량(Q95) 유량조건에서CASiMiR 모형은River2D 모형에 비해 가중가용면적을 0.3~25.3% 정도 과대 추정하는 결과를 보였다.

Keywords

References

  1. 강정훈, 이은태, 이주헌, 이도훈(2004). "어류의 서식처 조 건을 고려한 하천의 필요유량 산정에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 915-927.
  2. 강형식, 임동균, 정상화, 김규호(2008). "하천 어류의 서식처 적합도 기준 및 물리 서식처 해석." 한국수자원학회지, 한국수자원학회, 제42권, 제9호, pp. 47-61.
  3. 강형식, 임동균, 김규호(2010). "댐 하류 하천에서 발전방 류로 인한 어류 물리서식처 변화 수치모의." 대한토목학회논문집, 대한토목학회, 제30권, 제2B호, pp. 211-217.
  4. 강형식, 임동균, 허준욱, 김규호(2011). "금강수계 하천에서의 어류 서식처적합도지수 산정." 대한토목학회논문집, 대한토목학회, 제31권, 제2B호, pp. 193-203.
  5. 건설교통부(1995). 달천 하천정비기본 계획보고서(준용하천). 건설교통부 하천계획과.
  6. 과학기술부(2007). 지표수 조사 시스템 적용. 21세기 프론티어 연구개발 사업. 수자원의 지속적 확보기술개발 사업 연구보고서.
  7. 국토해양부(2008). 생물 서식환경 조성기술 개발 연구 보고서. 자연과 함께하는 하천복원기술개발 연구단.
  8. 김규호(1999). 하천 어류 서식 환경의 평가와 최적유량 산정. 박사학위논문, 연세대학교.
  9. 김지성, 이찬주, 김원(2007). "실측 수위에 의한 자갈하천 의 조도계수 산정." 한국수자원학회논문집, 한국수자원학회, 제40권, 제10호, pp. 755-768.
  10. 성영두, 박봉진, 주기재, 정관수(2005). "하천의 어류 서식 환경을 고려한 생태학적 추천유량 산정." 한국수자원학회논문집, 한국수자원학회, 제38권, 제7호, pp. 545-554.
  11. 임동균, 정상화, 안홍규, 김규호(2007). "피라미에 대한 보 철거 구간에서의 물리서식처 모의(PHABSIM) 적용." 한국수자원학회논문집, 한국수자원학회, 제40권, 제11 호, pp. 909-920.
  12. 허준욱, 김정곤(2009). "용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정." 한국수자원학회논문집, 한국수자원학회, 제42권, 제6호, pp. 481-491.
  13. Bovee, K.D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12, U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-82/26, Fort Collins, Colorado, U.S.A.
  14. Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J., and Henriksen, J. (1998). Stream habitat analysis using the instream flow incremental methodology. U.S. Geological Survey, Biological Resources Division Information and Technology Report, USGS/BRD-1998-0004.
  15. Fladung, M., Scolten, M., and Thiel, R. (2003). "Modelling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River." Journal of Applied Ichthyology, Vol. 19, pp. 303-314. https://doi.org/10.1046/j.1439-0426.2003.00506.x
  16. Garcia, A., Jorde, K., Habit, E., Caamano, D., and Parra, O. (2011). "Downstream Environmental Effects of Dam Operations: Changes in Habitat Quality for Native Fish Species." River Research and Applications, Vol. 27, No. 3, pp. 312-327. https://doi.org/10.1002/rra.1358
  17. Grift, R.E., Buijse, A.D., Van Densen, W.L.T., Machiels, M.A.M., Kranenbarg, J., Klein Breteler, J.G.P., and Backx, J.J.G.M. (2003). "Suitable habitats for 0-group fish in rehabilitated floodplains along the River Rhine." River Research and Applications, Vol. 19, pp. 353-374. https://doi.org/10.1002/rra.711
  18. Hauer, C., Unfer, G., Schmutz, S., and Habersack, H. (2008). "Morphodynamic Effects on the Habitat of Juvenile Cyprinids (Chondrostoma nasus) in a Restored Austrian Lowland River." Environmental Management, Vol. 42, pp. 279-296. https://doi.org/10.1007/s00267-008-9118-2
  19. Ibarra, A.A., Gevrey, M., Park, Y.S., Lim, P., and Lek, S. (2003). "Modelling the factors that influence fish guilds composition using a back-propagation network." Ecological Modelling, Vol. 160, pp. 281-290. https://doi.org/10.1016/S0304-3800(02)00259-4
  20. Instream Flow and Aquatic Systems Group(IFASG) (1986). Development and evaluation of habitat suitability criteria for use in the instream flowincremental methodology: Biologic report. Instream flow information paper No. 21, National Ecology Center.
  21. Jorde, K. (2010). Interim report of Investigations on physical habitat for Zacco Platypus in Dal River using modeling techniques. sje, Stuttgart, Germany.
  22. Jorde, K., Schneider, M., and Zollner, F. (2000). "Analysis of instream habitat quality-preference functions and fuzzy models." In: Wang, Hu(Eds.), Stochastic Hydraulics. Balkema, Rotterdam, pp. 671-680.
  23. Jorde, K., Schneider, M., Peter, A., and Zoellner, F. (2001). "Fuzzy based models for the evaluation of fish habitat quality and instream flow assessment." Proceedings of the 3rd International Symposium on Environmental Hydraulics, Tempe, Arizona, U.S.A.
  24. Labonne, J., Allouche, S., and Gaudin, P. (2003). "Use of a generalised linear model to test habitat preferences: the example of Zingel asper, an endemic endangered percid of the River Rhone." Freshwater Biology, Vol. 48, pp. 687-697. https://doi.org/10.1046/j.1365-2427.2003.01040.x
  25. Lee, J.H, Kil, J.T., and Jeong, S. (2010). "Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model." Ecological Engineering, Vol. 36, No. 10, pp. 1251-1259. https://doi.org/10.1016/j.ecoleng.2010.05.004
  26. Ligon, F.K., Dietrich, W.E., and Trush, W.J. (1995). "Downstream Ecological Effects of Dams." Bioscience, Vol. 45, No. 3, pp. 183-192. https://doi.org/10.2307/1312557
  27. McCully, P. (1996). Silenced Rivers-the Ecology and Politics of Large Dam. Zed Books, London.
  28. Milner, A.M., Brittain, J.E., Castella, E., and Petts, G.E. (2001). "Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis." Freshwater Biology, Vol. 46, pp. 1833-1847. https://doi.org/10.1046/j.1365-2427.2001.00861.x
  29. Moir, H.J., Gibbins, C.N., Soulsby, C., and Youngson A.F. (2005). "PHABSIM modelling of atlantic salmon spawning habitat in an upland stream: testing the influence of habitat suitability indices on model output." River Research and Applications, Vol. 21, No. 9, pp. 1021-1034. https://doi.org/10.1002/rra.869
  30. Poster, S., and Richter, B. (2003). RIVERS FOR LIFE : Managing water for people and nature. Island press, Washington DC, USA.
  31. Schneider, M. (2001). Habitat-und Abflussmodellierung fur Fliessgewasser mit unschar-fen Berechnungsansatzen, Dissertation, Mitteilungen des Instituts fur Wasserbau, Heft 108, Universitat Stuttgart, Eigenverlag, Institut fur Wasserbau der Universitat Stuttgart, Stuttgart, Germany.
  32. Schneider, M., Noack, M., Gebler, T., and Kopecki, L. (2010). Handbook for the habitat simulation model CASiMiR. Schneider & Jorde Ecological Engineering GmbH and University of Stuttgart Institute of Hydraulic Engineering, Germany.
  33. Steffler, P., and Blackburn, J. (2002). River2D: Twodimensional depth averaged model of river hydrodynamics and fish habitat. Univesity of Alberta, Canada.
  34. Vadas, R.L., and Orth, D.J. (2001). "Formulation of habitat suitability models for stream fish guilds: do the standard methods work?" Transactions of the American Fisheries Society, Vol. 130, pp. 217-235. https://doi.org/10.1577/1548-8659(2001)130<0217:FOHSMF>2.0.CO;2
  35. Wentworth, C.K. (1922). "A scale of grade and class terms for classifying sediments." Journal of Geology, Vol. 30, No. 5, pp. 377-392. https://doi.org/10.1086/622910
  36. Wu, J.G., Huang, J.H., Han, X.G., Xie, Z.Q., and Gao, X.M. (2003). "Three-Gorges Dam-experiment in habitat fragmentation?" Science, Vol. 300, pp. 1239-1240. https://doi.org/10.1126/science.1083312
  37. Zadeh, L.A. (1965). "Fuzzy sets." Information and Control, Vol. 8, No. 3, pp. 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution vol.3, pp.2, 2016, https://doi.org/10.17820/eri.2016.3.2.134
  2. Estimation of Ecological Flow and Habitat Suitability Index at Jeonju-Cheon Upstream vol.38, pp.2, 2016, https://doi.org/10.4491/KSEE.2016.38.2.47