DOI QR코드

DOI QR Code

Thymic Stromal Lymphopoietin (TSLP) Gene Polymorphisms are not Associated with Rheumatoid Arthritis in a Korean Population

TSLP 유전자의 다형성은 한국인 류마티스관절염 발생에 영향을 미치치 않는다

  • Lee, Sam-Youn (Department of Thoracic & Cardiovascular Surgery, School of Medicine, Wonkwang University) ;
  • Yu, Ji-In (Department of Pathology, School of Medicine, Wonkwang University) ;
  • Chae, Soo-Cheon (Department of Pathology, School of Medicine, Wonkwang University)
  • 이삼윤 (원광대학교 의과대학 흉부외과) ;
  • 유지인 (원광대학교 의과대학 병리학교실) ;
  • 채수천 (원광대학교 의과대학 병리학교실)
  • Received : 2011.11.09
  • Accepted : 2011.12.16
  • Published : 2012.01.30

Abstract

Thymic stromal lymphopoietin(TSLP) is a novel IL-7-like hematopoietic cytokine. Human TSLP is produced by epithelial cells, stromal cells, and mast cells. The TSLP gene is highly expressed in synovial fluid specimens derived from rheumatoid arthritis (RA) patients. We previously identified four single nucleotide polymorphisms (SNPs) and one variation site in human TSLP gene. In this study, we analyzed the genotypic and allelic frequencies of the TSLP SNPs between RA patients and healthy controls. We also investigated the relationships between SNP genotypes and the RF levels and anti-synthetic cyclic citrullinated peptide (CCP) levels in RA patients. We then calculated the haplotype frequencies defined by these SNPs for both groups. The genotype and allele frequencies of the TSLP SNPs did not differ significantly between the RA patients and the healthy controls. We also found that TSLP SNPs in the RA patients had no significant association with the levels of RF or anti-CCP. Our results suggest that TSLP SNPs are not associated with susceptibility to RA.

TSLP 유전자는 IL-7와 유사한 새로운 조혈성 사이토카인이다. 인간의 TSLP는 상피세포, 기질세포 및 비만세포에서 만들어진다. TSLP는 류마티스관절염 환자의 윤활성 활액에서 높은 발현을 나타낸다. 이전 연구에서 우리들은 사람의 TSLP유전자에서 4개의 유전자다형성 및 한 개의 변이를 발굴하였다. 이 연구에서는, 우리들이 발굴한 TSLP유전자의 유전자다형성의 유전자형 및 대립형질의 비율을 건강한 정상인과 류마티스관절염 환자에서 비교분석하였으며, 류마티스관절염 환자에 있어서 유전자형에 따른 RF 및 anti-CCP의 정도를 비교 분석하였다. 또한, 양쪽 그룹에서 이들 유전자다형성에 의한 일배체형 비율을 비교 분석하였다. 그 결과, 류마티스관절염 환자군과 건강한 정상인 군 사이에 있어서 유전자형, 대립형질 비율뿐만 아니라 일배체형 비율에 큰 차이를 보이지 않았다. 이 결과는 TSLP유전자의 유전자다형성은 류마티스관절염 감수성에 영향을 미치지 않음을 암시한다.

Keywords

References

  1. Arnett, F. C., S. M. Edworthy, D. A. Bloch, D. J. McShane, J. F. Fries, N. S. Cooper, and et al. 1988. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315-324 https://doi.org/10.1002/art.1780310302
  2. Baeten, D., I. Peene, A. Union, L. Meheus, M. Sebbag, G. Serre, E. M. Veys, and F. De Keyser. 2001. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum. 44, 2255-2262. https://doi.org/10.1002/1529-0131(200110)44:10<2255::AID-ART388>3.0.CO;2-#
  3. Chae, S. C., J. H. Song, S. C. Shim, K. S. Yoon, and H. T. Chung. 2004. The exon 4 variations of Tim-1 gene are associated with rheumatoid arthritis in a Korean population. Biochem. Biophys. Res. Commun. 315, 971-975. https://doi.org/10.1016/j.bbrc.2004.01.154
  4. Chae, S. C., S. C. Shim, and H. T. Chung. 2009. Association of TBX21 polymorphisms in a Korean population with rheumatoid arthritis. Exp. Mol. Med. 41, 33-41. https://doi.org/10.3858/emm.2009.41.1.005
  5. Chae, S. C., Y. R. Park, S. C. Shim, I. K. Lee, and H. T. Chung. 2005. Eotaxin-3 gene polymorphisms are associated with rheumatoid arthritis in a Korean population. Hum.Immunol. 66, 314-320. https://doi.org/10.1016/j.humimm.2005.01.002
  6. Edwards, J. C. and G. Cambridge. 1998. Rheumatoid arthritis: the predictable effect of small immune complexes in which antibody is also antigen. Br. J. Rheumatol. 37, 126-130. https://doi.org/10.1093/rheumatology/37.2.126
  7. Gregersen, P. K. 1999. Genetics of rheumatoid arthritis: confronting complexity. Arthritis Res. 1, 37-44. https://doi.org/10.1186/ar9
  8. Harrison, B., W. Thomson, D. Symmons, B. Ollier, N. Wiles, T. Payton, E. Barrett, and A. Silman. 1999. The influence of HLA-DRB1 alleles and rheumatoid factor on disease outcome in an inception cohort of patients with early inflammatory arthritis. Arthritis Rheum. 42, 2174-2183. https://doi.org/10.1002/1529-0131(199910)42:10<2174::AID-ANR19>3.0.CO;2-G
  9. Ito, T., Y. H. Wang, O. Duramad, T. Hori, G. J. Delespesse, N. Watanabe, F. X. F. Qin, Z. Yao, W. Cao, and Y. J. Liu. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213-1223. https://doi.org/10.1084/jem.20051135
  10. Koyama, K., T. Ozawa, K. Hatsushika, T. Ando, S. Takano, M. Wako, F. Suenaga, Y. Ohnuma, T. Ohba, R. Katoh, H. Sugiyama, Y. Hamada, H. Ogawa, K. Okumura, and A. Nakao. 2007. A possible role for TSLP in inflammatory arthritis. Biochem. Biophys. Res. Commun. 357, 99-104. https://doi.org/10.1016/j.bbrc.2007.03.081
  11. Liu, Y. J. 2006. Thymic stromal lymphopoietin: mast switche for allergic inflammation. J. Exp. Med. 203, 269-273. https://doi.org/10.1084/jem.20051745
  12. Pandey, A., K. Ozaki, and H. Baumann. 2000. Cloning of a novel receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59-64. https://doi.org/10.1038/76923
  13. Park, L. S., U. Martin, and K. Garka. 2000. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659-670. https://doi.org/10.1084/jem.192.5.659
  14. Reparon-Schuijt, C. C., W. J. Van Esch, C. Van Kooten, G. A. Schellekens, B. A. de Jong, W. J. van Venrooij, F. C. Breedveld, and C. L. Verweij. 2001. Secretion of anti-citrulline- containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44, 41-47. https://doi.org/10.1002/1529-0131(200101)44:1<41::AID-ANR6>3.0.CO;2-0
  15. Schellekens, G. A., H. Visser, B. A. de Jong, F. H. van den Hoogen, J. M. Hazes, F. C. Breedveld, and W. J. van Venrooij. 2000. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 43, 155-163. https://doi.org/10.1002/1529-0131(200001)43:1<155::AID-ANR20>3.0.CO;2-3
  16. Soumelis, V., P. A. Reche, and H. Kanzler. 2002. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673-680. https://doi.org/10.1038/nrm910
  17. Van der Heide, A., J. W. Jacobs, H. C. Haanen, and J. W. Bijlsma. 1995. Is it possible to predict the first year extent of pain and disability for patients with rheumatoid arthritis? J. Rheumatol. 22, 1466-1470.
  18. Watanabe, N., Y. H. Wang, and H. K. Lee. 2005. Hassall's corpuscles instruct dendritic cells to induce $CD4^+CD25^+$ regulatory T cells in human thymus. Nature 436, 1181-1185. https://doi.org/10.1038/nature03886
  19. Ying, S., B. O'Connor, J. Ratoff, Q. Meng, K. Mallett, D. Cousins, D. Robinson, G. Zhang, J. Zhao, T. H. Lee, and C. Corrigan. 2005. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 174, 8183-8190. https://doi.org/10.4049/jimmunol.174.12.8183
  20. Zhang, M. H., Y. S. Kim, E. H. Jin, K. M. Kim, J. H. Lee, C. S. Li, Q. Zhang, K. J. Yun, S. C. Chae, and H. T. Chung. 2008. Identification of polymorphisms in thymic stromal lymphopoietin (TSLP) gene and their association with allergic rhinitis. Genes Genomics 30, 291-299.