References
- Chorin, A.J., 1973. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57(4), 785-796. https://doi.org/10.1017/S0022112073002016
- Cottet, G.H. & Koumoutsakos, P., 2000. Vortex Methods: Theory and Practice. Cambridge University Press: Cambridge.
- Cottet, G.H. & Poncet, P., 2004. Advances in Direct Numerical Simulations of 3D Wall-Bounded Flows by Vortex-in-Cell Methods. Journal of Computational Physics, 193(1), 136-158. https://doi.org/10.1016/j.jcp.2003.08.025
- Cottet, G.H. Jiroveanu, D. & Michaux, B., 2003. Vorticity Dynamics and Turbulence Models for Large-Eddy Simulations. Mathematical Modelling and Numerical Analysis, 37(1), 187-207. https://doi.org/10.1051/m2an:2003013
- Cocle, R. Winckelmans, G. & Daeninck, G., 2007. Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. Journal of Computational Physics, 227(21), 9091-9120. https://doi.org/10.1016/j.jcp.2007.10.010
- Degond, P. & Mas-Gallic, S., 1989. The Weighted Particle Method for Convection Diffusion Equation, Part I: The Case of an Isotropic Viscosity, Part II: The Anisotropic Case. Mathematics of Computation, 53(188), 485-507.
- Greengard, L. & Rokhlin, V., 1987. A Fast Algorithm for Particle Simulations. Journal of Computational Physics, 73(2), 325-348. https://doi.org/10.1016/0021-9991(87)90140-9
- Gresho, P.M., 1991. Incompressible Fluid Dynamics: Some Fundamental Formulation Issues. Annual Review of Fluid Mechanics, 23, 413-453. https://doi.org/10.1146/annurev.fl.23.010191.002213
- Koumoutsakos, P.D. & Leonard, A., 1995. High resolution simulations of the flow around an impulsively started cylinder using vortex methods. Journal of Fluid Mechanics, 296, 1-38. https://doi.org/10.1017/S0022112095002059
- Koumoutsakos, P.D. Leonard, A. & Pepin, F.M., 1994. Boundary Conditions for Viscous Vortex Methods. Journal of Computational Physics, 113(1), 52-61. https://doi.org/10.1006/jcph.1994.1117
- Kim, K.S., 2003. A Vorticity-Velocity-Pressure Formulation for Numerical Solutions of the Incompressible Navier-Stokes Equations. Ph.D. Seoul National University.
- Lee, J.T., 1987. A Potential Based Panel Method for Analysis of Marine Propellers in Steady Flow. Ph.D. Massachusetts Institute of Technology.
- Lee, K.J., 2009. An Immersed Boundary Vortex-in-Cell Method Combined with a Panel Method for Incompressible Viscous Flow Analysis. Ph.D. Seoul National University.
- Ploumhans, P. & Winckelmans, G.S., 2000. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. Journal of Computational Physics, 165(2), 354-406. https://doi.org/10.1006/jcph.2000.6614
- Ploumhans, P. et al., 2002. Vortex Methods for Direct Numerical Simulation of Three Dimensional Bluff Body Flows: Application to the Sphere at Re=300, 500 and 1000. Journal of Computational Physics, 178(2), 427-463. https://doi.org/10.1006/jcph.2002.7035
- Suh, J.C. & Kim, K.S., 1999. A Vorticity-Velocity Formulation for Solving the Two-Dimensional Navier-Stokes Equations. Fluid Dynamics Research, 25(4), 195-216. https://doi.org/10.1016/S0169-5983(99)00020-9
- Wu, J.Z. & Wu, J.M., 1993. Interactions Between a Solid Surface and Viscous Compressible Flow Field. Journal of Fluid Mechanics, 254, 183-211. https://doi.org/10.1017/S0022112093002083
- Wu, J.Z. Wu, X.H. Ma, H.Y. & Wu, J.M., 1994. Dynamic Vorticity Condition: Theoretical Analysis and Numerical Implementation. International Journal for Numerical Methods In Fluids, 19(10), 905-938. https://doi.org/10.1002/fld.1650191004